How sample heterogeneity can obscure the signal of microbial interactions

被引:37
作者
Armitage, David W. [1 ]
Jones, Stuart E. [1 ]
机构
[1] Univ Notre Dame, Dept Biol Sci, 100 Galvin Life Sci Ctr, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
SPECIES COOCCURRENCE; SIMPSONS PARADOX; SCALE; INDIVIDUALS; NETWORKS; PATTERNS;
D O I
10.1038/s41396-019-0463-3
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Microbial community data are commonly subjected to computational tools such as correlation networks, null models, and dynamic models, with the goal of identifying the ecological processes structuring microbial communities. A major assumption of these methods is that the signs and magnitudes of species interactions and vital rates can be reliably parsed from observational data on species' (relative) abundances. However, we contend that this assumption is violated when sample units contain any underlying spatial structure. Here, we show how three phenomena-Simpson's paradox, context-dependence, and nonlinear averaging-can lead to erroneous conclusions about population parameters and species interactions when samples contain heterogeneous mixtures of populations or communities. At the root of this issue is the fundamental mismatch between the spatial scales of species interactions (micrometers) and those of typical microbial community samples (millimeters to centimetres). These issues can be overcome by measuring and accounting for spatial heterogeneity at very small scales, which will lead to more reliable inference of the ecological mechanisms structuring natural microbial communities.
引用
收藏
页码:2639 / 2646
页数:8
相关论文
共 54 条
[1]   Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation [J].
Agler, Matthew T. ;
Ruhe, Jonas ;
Kroll, Samuel ;
Morhenn, Constanze ;
Kim, Sang-Tae ;
Weigel, Detlef ;
Kemen, Eric M. .
PLOS BIOLOGY, 2016, 14 (01)
[2]  
[Anonymous], 2018, P NATL ACAD SCI
[3]   Ignoring a covariate: An example of Simpson's paradox [J].
Appleton, DR ;
French, JM ;
Vanderpump, MPJ .
AMERICAN STATISTICIAN, 1996, 50 (04) :340-341
[4]   Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes [J].
Balint, Miklos ;
Bahram, Mohammad ;
Eren, A. Murat ;
Faust, Karoline ;
Fuhrman, Jed A. ;
Lindahl, Bjorn ;
O'Hara, Robert B. ;
Opik, Maarja ;
Sogin, Mitchell L. ;
Unterseher, Martin ;
Tedersoo, Leho .
FEMS MICROBIOLOGY REVIEWS, 2016, 40 (05) :686-700
[5]   Fundamental contradictions among observational and experimental estimates of non-trophic species interactions [J].
Barner, Allison K. ;
Coblentz, Kyle E. ;
Hacker, Sally D. ;
Menge, Bruce A. .
ECOLOGY, 2018, 99 (03) :557-566
[6]   Deciphering microbial interactions and detecting keystone species with co-occurrence networks [J].
Berry, David ;
Widder, Stefanie .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[7]   Learning Microbial Interaction Networks from Metagenomic Count Data [J].
Biswas, Surojit ;
McDonald, Meredith ;
Lundberg, Derek S. ;
Dang, Jeffery L. ;
Jojic, Vladimir .
RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY (RECOMB 2015), 2015, 9029 :32-43
[8]   Organic Particles: Heterogeneous Hubs for Microbial Interactions in Aquatic Ecosystems [J].
Bizic-Ionescu, Mina ;
Ionescu, Danny ;
Grossart, Hans-Peter .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[9]   SIMPSONS PARADOX AND SURE-THING PRINCIPLE [J].
BLYTH, CR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (33) :364-&
[10]   How context dependent are species interactions? [J].
Chamberlain, Scott A. ;
Bronstein, Judith L. ;
Rudgers, Jennifer A. .
ECOLOGY LETTERS, 2014, 17 (07) :881-890