ON CONCENTRATION OF SEMI-CLASSICAL SOLITARY WAVES FOR A GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION

被引:2
|
作者
Wei, Yuanhong [1 ]
Li, Yong [1 ,2 ,3 ,4 ]
Yang, Xue [1 ,2 ,3 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[3] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[4] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130012, Jilin, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2017年 / 10卷 / 05期
关键词
Concentration; semi-classical; solitary wave; Kadomtsev-Petviashvili equation; critical point; WELL-POSEDNESS; EXISTENCE; STATES;
D O I
10.3934/dcdss.2017059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is concerned with semi-classical solitary wave solutions of a generalized Kadomtsev-Petviashvili equation in R-2. Parameter epsilon and potential V(x, y) are included in the problem. The existence of the least energy solution is established for all epsilon > 0 small. Moreover, we point out that these solutions converge to a least energy solution of the associated limit problem and concentrate to the minimum point of the potential as epsilon -> 0.
引用
收藏
页码:1095 / 1106
页数:12
相关论文
共 50 条
  • [21] Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation
    Hofstrand, A.
    Moloney, J. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 366 : 51 - 58
  • [22] Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
    Grava, T.
    Klein, C.
    Pitton, G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [23] MULTIPLICITY OF SOLUTIONS FOR A GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION WITH POTENTIAL IN R2
    Xie, Zheng
    Chen, Jing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (48) : 1 - 17
  • [24] Remarks on the solutions of the Kadomtsev-Petviashvili equation
    Han, WT
    Li, YH
    PHYSICS LETTERS A, 2001, 283 (3-4) : 185 - 194
  • [25] Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation
    Ehrnstrom, Mats
    Groves, Mark D.
    NONLINEARITY, 2018, 31 (12) : 5351 - 5384
  • [26] Kadomtsev-Petviashvili equation for solitary waves in warm dense astrophysical electron-positron-ion plasmas
    Rahman, Ata-ur
    Khan, S. A.
    Qamar, A.
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 347 (01) : 119 - 127
  • [27] A splitting approach for the Kadomtsev-Petviashvili equation
    Einkemmer, Lukas
    Ostermann, Alexander
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 716 - 730
  • [28] Multisoliton excitations for the Kadomtsev-Petviashvili equation
    Ma, ZY
    Hua, GS
    Zheng, CL
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 32 - 38
  • [29] Lump solutions to the Kadomtsev-Petviashvili equation
    Ma, Wen-Xiu
    PHYSICS LETTERS A, 2015, 379 (36) : 1975 - 1978
  • [30] Applications of A Generalized Kadomtsev-Petviashvili Type Equation for Varying Water Depths
    Beji, Serdar
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978