Two-weighted inequalities for the derivatives of holomorphic functions and Carleson measures on the unit ball

被引:4
作者
Kang, H [1 ]
Koo, H
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
[2] Hankuk Univ Foreign Studies, Dept Math, Yongin 449791, Kyungki Do, South Korea
关键词
D O I
10.1017/S0027763000007340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize those positive measure mu's on the higher dimensional unit ball such that "two-weighted inequalities" hold for holomorphic functions and their derivatives. Characterizations are given in terms of the Carleson measure conditions. The results of this paper also distinguish between the fractional and the tangential derivatives.
引用
收藏
页码:107 / 131
页数:25
相关论文
共 19 条
[1]  
[Anonymous], 1989, DISSERTATIONES MATH
[2]   ESTIMATES FOR DERIVATIVES OF HOLOMORPHIC-FUNCTIONS IN PSEUDOCONVEX DOMAINS [J].
BEATROUS, F .
MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (01) :91-116
[3]   INTERPOLATIONS BY BOUNDED ANALYTIC FUNCTIONS AND CORONA PROBLEM [J].
CARLESON, L .
ANNALS OF MATHEMATICS, 1962, 76 (03) :547-&
[4]  
Choe B.R., PREPRINT
[5]   EXTENSION OF A THEOREM OF CARLESON [J].
DUREN, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (01) :143-&
[6]   EMBEDDING DERIVATIVES OF WEIGHTED HARDY-SPACES INTO LEBESGUE SPACES [J].
GIRELA, D ;
LORENTE, M ;
SARRION, MD .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 116 :151-166
[7]  
GRELLIER S, 1992, PUBLICATIONS MATEMAT, V36, P251
[8]   2-WEIGHT NORM INEQUALITY AND CARLESON MEASURE IN WEIGHTED HARDY-SPACES [J].
GU, DS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (06) :1206-1219
[9]   Carleson measure characterizations of BMOA on pseudoconvex domains [J].
Kang, HB ;
Koo, HW .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 178 (02) :279-291
[10]  
Littlewood JE, 1937, P LOND MATH SOC, V42, P52