A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue

被引:22
作者
Anderson, D. [1 ]
Blom, J. [3 ]
Mandjes, M. [2 ,3 ]
Thorsdottir, H. [2 ,3 ]
de Turck, K. [4 ]
机构
[1] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[2] Univ Amsterdam, Korteweg de Vries Inst KdVI Math, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] CWI, Sci Pk 123,POB 94079, NL-1090 GB Amsterdam, Netherlands
[4] Univ Ghent, TELIN, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
基金
美国国家科学基金会;
关键词
Ornstein-Uhlenbeck processes; Markov modulation; Central limit theorems; Martingale methods; MATRIX;
D O I
10.1007/s11009-014-9405-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a model in which the production of new molecules in a chemical reaction network occurs in a seemingly stochastic fashion, and can be modeled as a Poisson process with a varying arrival rate: the rate is lambda (i) when an external Markov process J(a <...) is in state i. It is assumed that molecules decay after an exponential time with mean mu (-1). The goal of this work is to analyze the distributional properties of the number of molecules in the system, under a specific time-scaling. In this scaling, the background process is sped up by a factor N (alpha) , for some alpha > 0, whereas the arrival rates become N lambda (i) , for N large. The main result of this paper is a functional central limit theorem (F-CLT) for the number of molecules, in that, after centering and scaling, it converges to an Ornstein-Uhlenbeck process. An interesting dichotomy is observed: (i) if alpha > 1 the background process jumps faster than the arrival process, and consequently the arrival process behaves essentially as a (homogeneous) Poisson process, so that the scaling in the F-CLT is the usual , whereas (ii) for alpha a parts per thousand currency sign1 the background process is relatively slow, and the scaling in the F-CLT is N (1-alpha/2). In the latter regime, the parameters of the limiting Ornstein-Uhlenbeck process contain the deviation matrix associated with the background process J(.).
引用
收藏
页码:153 / 168
页数:16
相关论文
共 26 条
  • [1] Anderson DF, 2011, DESIGN AND ANALYSIS OF BIOMOLECULAR CIRCUITS:ENGINEERING APPROACHES TO SYSTEMS AND SYNTHETIC BIOLOGY, P3, DOI 10.1007/978-1-4419-6766-4_1
  • [2] [Anonymous], 2003, Applied probability and queues
  • [3] Bridging genetic networks and queueing theory
    Arazi, A
    Ben-Jacob, E
    Yechiali, U
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 : 585 - 616
  • [4] Asymptotic analysis of multiscale approximations to reaction networks
    Ball, Karen
    Kurtz, Thomas G.
    Popovic, Lea
    Rempala, Greg
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (04) : 1925 - 1961
  • [5] ON THE FUNCTIONAL CENTRAL LIMIT-THEOREM AND THE LAW OF THE ITERATED LOGARITHM FOR MARKOV-PROCESSES
    BHATTACHARYA, RN
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (02): : 185 - 201
  • [6] Blom Joke, 2013, Analytical and Stochastic Modeling Techniques and Applications. 20th International Conference, ASMTA 2013. Proceedings: LNCS 7984, P81, DOI 10.1007/978-3-642-39408-9_7
  • [7] Time-Scaling Limits for Markov-Modulated Infinite-Server Queues
    Blom, J.
    Mandjes, M.
    Thorsdottir, H.
    [J]. STOCHASTIC MODELS, 2013, 29 (01) : 112 - 127
  • [8] Blom J, 2013, QUEUEING SY IN PRESS
  • [9] Borovkov A.A., 1967, SIBERIAN MATH, V8, P746
  • [10] Queueing up for enzymatic processing: correlated signaling through coupled degradation
    Cookson, Natalie A.
    Mather, William H.
    Danino, Tal
    Mondragon-Palomino, Octavio
    Williams, Ruth J.
    Tsimring, Lev S.
    Hasty, Jeff
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2011, 7