A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue

被引:22
作者
Anderson, D. [1 ]
Blom, J. [3 ]
Mandjes, M. [2 ,3 ]
Thorsdottir, H. [2 ,3 ]
de Turck, K. [4 ]
机构
[1] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[2] Univ Amsterdam, Korteweg de Vries Inst KdVI Math, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] CWI, Sci Pk 123,POB 94079, NL-1090 GB Amsterdam, Netherlands
[4] Univ Ghent, TELIN, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
基金
美国国家科学基金会;
关键词
Ornstein-Uhlenbeck processes; Markov modulation; Central limit theorems; Martingale methods; MATRIX;
D O I
10.1007/s11009-014-9405-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a model in which the production of new molecules in a chemical reaction network occurs in a seemingly stochastic fashion, and can be modeled as a Poisson process with a varying arrival rate: the rate is lambda (i) when an external Markov process J(a <...) is in state i. It is assumed that molecules decay after an exponential time with mean mu (-1). The goal of this work is to analyze the distributional properties of the number of molecules in the system, under a specific time-scaling. In this scaling, the background process is sped up by a factor N (alpha) , for some alpha > 0, whereas the arrival rates become N lambda (i) , for N large. The main result of this paper is a functional central limit theorem (F-CLT) for the number of molecules, in that, after centering and scaling, it converges to an Ornstein-Uhlenbeck process. An interesting dichotomy is observed: (i) if alpha > 1 the background process jumps faster than the arrival process, and consequently the arrival process behaves essentially as a (homogeneous) Poisson process, so that the scaling in the F-CLT is the usual , whereas (ii) for alpha a parts per thousand currency sign1 the background process is relatively slow, and the scaling in the F-CLT is N (1-alpha/2). In the latter regime, the parameters of the limiting Ornstein-Uhlenbeck process contain the deviation matrix associated with the background process J(.).
引用
收藏
页码:153 / 168
页数:16
相关论文
共 26 条
[1]  
Anderson DF, 2011, DESIGN AND ANALYSIS OF BIOMOLECULAR CIRCUITS:ENGINEERING APPROACHES TO SYSTEMS AND SYNTHETIC BIOLOGY, P3, DOI 10.1007/978-1-4419-6766-4_1
[2]  
[Anonymous], 2003, Applied probability and queues
[3]   Bridging genetic networks and queueing theory [J].
Arazi, A ;
Ben-Jacob, E ;
Yechiali, U .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 :585-616
[4]   Asymptotic analysis of multiscale approximations to reaction networks [J].
Ball, Karen ;
Kurtz, Thomas G. ;
Popovic, Lea ;
Rempala, Greg .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (04) :1925-1961
[5]   ON THE FUNCTIONAL CENTRAL LIMIT-THEOREM AND THE LAW OF THE ITERATED LOGARITHM FOR MARKOV-PROCESSES [J].
BHATTACHARYA, RN .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (02) :185-201
[6]  
Blom Joke, 2013, Analytical and Stochastic Modeling Techniques and Applications. 20th International Conference, ASMTA 2013. Proceedings: LNCS 7984, P81, DOI 10.1007/978-3-642-39408-9_7
[7]   Time-Scaling Limits for Markov-Modulated Infinite-Server Queues [J].
Blom, J. ;
Mandjes, M. ;
Thorsdottir, H. .
STOCHASTIC MODELS, 2013, 29 (01) :112-127
[8]  
Blom J, 2013, QUEUEING SY IN PRESS
[9]  
Borovkov A.A., 1967, SIBERIAN MATH, V8, P746
[10]   Queueing up for enzymatic processing: correlated signaling through coupled degradation [J].
Cookson, Natalie A. ;
Mather, William H. ;
Danino, Tal ;
Mondragon-Palomino, Octavio ;
Williams, Ruth J. ;
Tsimring, Lev S. ;
Hasty, Jeff .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7