A Hybrid Krill-ANFIS Model for Wind Speed Forecasting

被引:15
|
作者
Ahmed, Khaled [1 ,7 ]
Ewees, Ahmed A. [2 ,7 ]
Abd El Aziz, Mohamed [1 ,3 ,7 ]
Hassanien, Aboul Ella [4 ,7 ]
Gaber, Tarek [5 ,7 ]
Tsai, Pei-Wei [6 ]
Pan, Jeng-Shyang [6 ]
机构
[1] Cairo Univ, Fac Comp & Informat, Giza, Egypt
[2] Damietta Univ, Dept Comp, Dumyat, Egypt
[3] Zagazig Univ, Fac Sci, Zagazig, Egypt
[4] Nahda Univ, Fac Comp Sci, Bani Suwayf, Egypt
[5] Suez Canal Univ, Fac Comp & Informat, Ismailia, Egypt
[6] Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou, Peoples R China
[7] SRGE, Cairo, Egypt
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016 | 2017年 / 533卷
关键词
Renewable energy; Adaptive Neuro-Fuzzy Inference System; Wind speed forecasting; Krill herd optimization; Hybrid model; FUZZY INFERENCE SYSTEM; PREDICTION; OPTIMIZATION; NETWORK;
D O I
10.1007/978-3-319-48308-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding an alternative renewable energy source instead of using traditional energy such as electricity or gas is an important research trend and challenge. This paper presents a new hybrid algorithm that uses Krill Herd (KH) optimization algorithm and Adaptive Neuro-Fuzzy Inference System (ANFIS) to be able to fit for wind speed forecasting, which is an essential step to generate wind power. ANFIS's parameters are optimized using KH. The proposed model called (Krill-ANFIS). This model is compared with three models basic ANFIS, PSO-ANFIS, and GA-ANFIS. Krill-ANFIS proved that it can be used as an efficient predictor for the wind speed as well as it can achieve high results and performance measures of root mean square error (RMSE), Coefficient of determination R-2 and average absolute percent relative error (AAPRE).
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [1] A Hybrid Model for Forecasting Wind Speed and Wind Power Generation
    Chang, G. W.
    Lu, H. J.
    Hsu, L. Y.
    Chen, Y. Y.
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [2] A Hybrid Model With Error Correction for Wind Speed Forecasting
    Barchi, Tathiana M.
    Costa, Lucas F. P.
    Puchta, Erickson
    Martins, Marcella S. R.
    Sguario Coelho de Andrade, Mauren Louise
    de Mattos Neto, Paulo S. G.
    Siqueira, Hugo Valadares
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [3] An AI-Based Hybrid Forecasting Model for Wind Speed Forecasting
    Lu, Haiyan
    Heng, Jiani
    Wang, Chen
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 221 - 230
  • [4] Wind speed forecasting based on hybrid model with model selection and wind energy conversion
    Wang, Chen
    Zhang, Shenghui
    Liao, Peng
    Fu, Tonglin
    RENEWABLE ENERGY, 2022, 196 : 763 - 781
  • [5] An adaptive hybrid model for short term wind speed forecasting
    Zhang, Jinliang
    Wei, Yiming
    Tan, Zhongfu
    ENERGY, 2020, 190
  • [6] A Hybrid Deep Interval Prediction Model for Wind Speed Forecasting
    Li, Yuhong
    Chen, Xinbiao
    Li, Chaoshun
    Tang, Geng
    Gan, Zhenhao
    An, Xueli
    IEEE ACCESS, 2021, 9 : 7323 - 7335
  • [7] A hybrid wind speed forecasting model using stacked autoencoder and LSTM
    Jaseena, K. U.
    Kovoor, Binsu C.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (02)
  • [8] A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting
    Liu, Guanjun
    Wang, Chao
    Qin, Hui
    Fu, Jialong
    Shen, Qin
    ENERGIES, 2022, 15 (19)
  • [9] Short-term wind speed forecasting based on a hybrid model
    Zhang, Wenyu
    Wang, Jujie
    Wang, Jianzhou
    Zhao, Zengbao
    Tian, Meng
    APPLIED SOFT COMPUTING, 2013, 13 (07) : 3225 - 3233
  • [10] VMD-SCINet: a hybrid model for improved wind speed forecasting
    Parri, Srihari
    Teeparthi, Kiran
    EARTH SCIENCE INFORMATICS, 2024, 17 (01) : 329 - 350