Client Selection and Bandwidth Allocation in Wireless Federated Learning Networks: A Long-Term Perspective

被引:264
作者
Xu, Jie [1 ]
Wang, Heqiang [1 ]
机构
[1] Univ Miami, Dept Elect & Comp Engn, Coral Gables, FL 33146 USA
关键词
Bandwidth; Servers; Wireless networks; Channel allocation; Data models; Training; Federated learning (FL); client selection; resource allocation; wireless networks;
D O I
10.1109/TWC.2020.3031503
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies federated learning (FL) in a classic wireless network, where learning clients share a common wireless link to a coordinating server to perform federated model training using their local data. In such wireless federated learning networks (WFLNs), optimizing the learning performance depends crucially on how clients are selected and how bandwidth is allocated among the selected clients in every learning round, as both radio and client energy resources are limited. While existing works have made some attempts to allocate the limited wireless resources to optimize FL, they focus on the problem in individual learning rounds, overlooking an inherent yet critical feature of federated learning. This paper brings a new long-term perspective to resource allocation in WFLNs, realizing that learning rounds are not only temporally interdependent but also have varying significance towards the final learning outcome. To this end, we first design data-driven experiments to show that different temporal client selection patterns lead to considerably different learning performance. With the obtained insights, we formulate a stochastic optimization problem for joint client selection and bandwidth allocation under long-term client energy constraints, and develop a new algorithm that utilizes only currently available wireless channel information but can achieve long-term performance guarantee. Experiments show that our algorithm results in the desired temporal client selection pattern, is adaptive to changing network environments and far outperforms benchmarks that ignore the long-term effect of FL.
引用
收藏
页码:1188 / 1200
页数:13
相关论文
共 42 条
  • [1] Aji AF, 2017, ARXIV PREPRINT ARXIV
  • [2] Federated Learning Over Wireless Fading Channels
    Amiri, Mohammad Mohammadi
    Gunduz, Deniz
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (05) : 3546 - 3557
  • [3] Bhowmick A, 2019, PREPRINT
  • [4] Practical Secure Aggregation for Privacy-Preserving Machine Learning
    Bonawitz, Keith
    Ivanov, Vladimir
    Kreuter, Ben
    Marcedone, Antonio
    McMahan, H. Brendan
    Patel, Sarvar
    Ramage, Daniel
    Segal, Aaron
    Seth, Karn
    [J]. CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 1175 - 1191
  • [5] Boyd S., 2004, CONVEX OPTIMIZATION, DOI [DOI 10.1017/CBO9780511804441, 10.1017/CBO9780511804441]
  • [6] Chen M., 2020, ARXIV200107845
  • [7] A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks
    Chen, Mingzhe
    Yang, Zhaohui
    Saad, Walid
    Yin, Changchuan
    Poor, H. Vincent
    Cui, Shuguang
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) : 269 - 283
  • [8] Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming
    Chen, Tzu-Li
    Cheng, Chen-Yang
    Chou, Yi-Han
    [J]. ANNALS OF OPERATIONS RESEARCH, 2020, 290 (1-2) : 813 - 836
  • [9] Corinzia Luca, 2019, ARXIV190606268
  • [10] De S, 2017, PR MACH LEARN RES, V54, P1504