Thermal and ablative properties of binary carbon nanotube and nanodiamond reinforced carbon fibre epoxy matrix composites

被引:12
|
作者
Ahmad, M. S. [1 ]
Subhani, T. [1 ]
机构
[1] Inst Space Technol, Dept Mat Sci & Engn, Islamabad, Pakistan
关键词
Erosion resistance; Thermal conductivity; Carbon nanotubes; Nanodiamonds; Ablation; CONDUCTIVITY; FUNCTIONALIZATION; MECHANISMS; OXIDATION; POLYMERS;
D O I
10.1179/1743289815Y.0000000036
中图分类号
TB33 [复合材料];
学科分类号
摘要
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens-(i) carbon fibre epoxymatrix composite (CF/Epoxy), (ii) carbon fibre epoxymatrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxymatrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs-were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 14% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 50 条
  • [31] Carbon nanotube reinforced metal matrix composites - a review
    Bakshi, S. R.
    Lahiri, D.
    Agarwal, A.
    INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) : 41 - 64
  • [32] Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties
    Li, Jingwen
    Wu, Zhixiong
    Huang, Chuanjun
    Li, Laifeng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 104 : 81 - 88
  • [33] Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface
    Zhao, Zhongbo
    Teng, Kunyue
    Li, Nan
    Li, Xiaojie
    Xu, Zhiwei
    Chen, Lei
    Niu, Jiarong
    Fu, Hongjun
    Zhao, Lihuan
    Liu, Ya
    COMPOSITE STRUCTURES, 2017, 159 : 761 - 772
  • [34] Fatigue of nanotube-reinforced carbon fiber epoxy composites
    Gao, Ying
    Pan, Li
    MACHINERY, MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, 2012, 510 : 753 - +
  • [35] Thermal Properties of Carbon Nanotube-Copper Composites for Thermal Management Applications
    Chu, Ke
    Guo, Hong
    Jia, Chengchang
    Yin, Fazhang
    Zhang, Ximin
    Liang, Xuebing
    Chen, Hui
    NANOSCALE RESEARCH LETTERS, 2010, 5 (05): : 868 - 874
  • [36] Thermal and electrical properties of the epoxy nanocomposites reinforced with purified carbon nanotubes
    Chen, Junjie
    Han, Jiecheng
    Xu, Deguang
    MATERIALS LETTERS, 2019, 246 : 20 - 23
  • [37] Improvement of interface and mechanical properties in carbon nanotube reinforced Cu-Cr matrix composites
    Chu, Ke
    Jia, Cheng-chang
    Jiang, Li-kun
    Li, Wen-sheng
    MATERIALS & DESIGN, 2013, 45 : 407 - 411
  • [38] Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites
    Zhang, Xiwen
    Zhao, Dongyu
    Luan, Dongxue
    Bi, Changlong
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (12):
  • [39] Wear behavior of functionalized multi-walled carbon nanotube reinforced epoxy matrix composites
    Sulong, Abu Bakar
    Park, Joohyuk
    Lee, Naesung
    Goak, Jeungchoon
    JOURNAL OF COMPOSITE MATERIALS, 2006, 40 (21) : 1947 - 1960
  • [40] Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties
    G. K. Maron
    B. S. Noremberg
    J. H. Alano
    F. R. Pereira
    V. G. Deon
    R. C. R. Santos
    V. N. Freire
    A. Valentini
    Neftali Lenin Villarreal Carreno
    Polymer Bulletin, 2018, 75 : 1619 - 1633