Thermal and ablative properties of binary carbon nanotube and nanodiamond reinforced carbon fibre epoxy matrix composites

被引:12
|
作者
Ahmad, M. S. [1 ]
Subhani, T. [1 ]
机构
[1] Inst Space Technol, Dept Mat Sci & Engn, Islamabad, Pakistan
关键词
Erosion resistance; Thermal conductivity; Carbon nanotubes; Nanodiamonds; Ablation; CONDUCTIVITY; FUNCTIONALIZATION; MECHANISMS; OXIDATION; POLYMERS;
D O I
10.1179/1743289815Y.0000000036
中图分类号
TB33 [复合材料];
学科分类号
摘要
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens-(i) carbon fibre epoxymatrix composite (CF/Epoxy), (ii) carbon fibre epoxymatrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxymatrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs-were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 14% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 50 条
  • [21] Microstructure and mechanical property of carbon nanotube and continuous carbon fiber reinforced epoxy resin matrix composites
    Zhao, Dong-Lin
    Qiao, Ren-Hai
    Wang, Cheng-Zhong
    Shen, Zeng-Min
    AICAM 2005, 2006, 11-12 : 517 - +
  • [22] Mechanical Properties of Epoxy Composites Reinforced with Carbon Nanotube and Oxyfluorinated Powdered-carbon Fiber
    Choi, Ye Ji
    Lee, Kyeong Min
    Kim, Kyoungsik
    Lee, Young-Seak
    POLYMER-KOREA, 2017, 41 (05) : 835 - 843
  • [23] Interface Toughness of Carbon Nanotube Reinforced Epoxy Composites
    Ganesan, Yogeeswaran
    Peng, Cheng
    Lu, Yang
    Loya, Phillip E.
    Moloney, Padraig
    Barrera, Enrique
    Yakobson, Boris I.
    Tour, James M.
    Ballarini, Roberto
    Lou, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (02) : 129 - 134
  • [24] Thermal properties of carbon fibre/epoxy composites modified by novolac resin
    He, H. W.
    Wang, J. L.
    Li, K. X.
    MATERIALS RESEARCH INNOVATIONS, 2013, 17 (06) : 425 - 429
  • [25] Mechanical properties of carbon-fibre reinforced silicate matrix composites
    Cortes, D. A.
    Hogg, P. J.
    Tanner, K. E.
    Ren, G.
    MATERIALS & DESIGN, 2007, 28 (05) : 1547 - 1554
  • [26] Carbon fibre reinforced copper matrix composites: Processing routes and properties
    LePetitcorps, Y
    Poueylaud, JM
    Albingre, L
    Berdeu, B
    Lobstein, P
    Silvain, JF
    CMMC 96 - PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON CERAMIC AND METAL MATRIX COMPOSITES, PTS 1 AND 2, 1997, 127-3 : 327 - 334
  • [27] Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites
    Yang, Kai
    Gu, Mingyuan
    Guo, Yiping
    Pan, Xifeng
    Mu, Guohong
    CARBON, 2009, 47 (07) : 1723 - 1737
  • [28] Mechanical and thermal insulation properties of carbon fibre-reinforced carbon aerogel composites
    Li, Longlong
    Feng, Junzong
    Liu, Fengqi
    Li, Liangjun
    Jiang, Yonggang
    Feng, Jian
    ADVANCES IN APPLIED CERAMICS, 2022, 121 (5-8) : 222 - 230
  • [29] INVESTIGATION OF MECHANICAL PROPERTIES OF CARBON FIBRE/EPOXY COMPOSITES INCORPORATING NANOCLAY AND MULTI WALLED CARBON NANOTUBE
    Ongun, Alemdar
    Avci, Ahmet
    Erisen, Ali
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2017, 47 (04): : 449 - 454
  • [30] CARBON NANOTUBE-REINFORCED CERAMIC MATRIX COMPOSITES: PROCESSING AND PROPERTIES
    Dassios, Konstantinos G.
    HIGH TEMPERATURE CERAMIC MATRIX COMPOSITES 8: CERAMIC TRANSACTIONS, VOL 248, 2014, 248 : 133 - 157