Thermal and ablative properties of binary carbon nanotube and nanodiamond reinforced carbon fibre epoxy matrix composites

被引:12
作者
Ahmad, M. S. [1 ]
Subhani, T. [1 ]
机构
[1] Inst Space Technol, Dept Mat Sci & Engn, Islamabad, Pakistan
关键词
Erosion resistance; Thermal conductivity; Carbon nanotubes; Nanodiamonds; Ablation; CONDUCTIVITY; FUNCTIONALIZATION; MECHANISMS; OXIDATION; POLYMERS;
D O I
10.1179/1743289815Y.0000000036
中图分类号
TB33 [复合材料];
学科分类号
摘要
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens-(i) carbon fibre epoxymatrix composite (CF/Epoxy), (ii) carbon fibre epoxymatrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxymatrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs-were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 14% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 38 条
[1]  
Ahmad M., 2014, J SPACECRAFT TECHNOL, V4, P101
[2]   Thermal insulation by heat resistant polymers for solid rocket motor insulation [J].
Ahmed, Ashraf Fathy ;
Hoa, Suong V. .
JOURNAL OF COMPOSITE MATERIALS, 2012, 46 (13) :1549-1559
[3]  
[Anonymous], 2009, D593009 ASTM
[4]  
[Anonymous], ARCH CRIT CARE MED
[5]  
[Anonymous], 1996, E28580 ASTM
[6]   Thermal Oxidation of Detonation Nanodiamond [J].
Apolonskaya, I. A. ;
Tyurnina, A. V. ;
Kopylov, P. G. ;
Obraztsov, A. N. .
MOSCOW UNIVERSITY PHYSICS BULLETIN, 2009, 64 (04) :433-436
[7]   Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites [J].
Ayatollahi, M. R. ;
Alishahi, E. ;
Doagou-R, S. ;
Shadlou, S. .
COMPOSITES PART B-ENGINEERING, 2012, 43 (08) :3425-3430
[8]  
BEUSMAN CC, 1960, ARSJ-AM ROCKET SOC J, V30, P573
[9]   Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites [J].
Cho, D ;
Yoon, BI .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (02) :271-280
[10]   Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance [J].
Chu, Ke ;
Jia, Chengchang ;
Liang, Xuebing ;
Chen, Hui ;
Gao, Wenjia ;
Guo, Hong .
MATERIALS & DESIGN, 2009, 30 (10) :4311-4316