Thermal and ablative properties of binary carbon nanotube and nanodiamond reinforced carbon fibre epoxy matrix composites

被引:12
|
作者
Ahmad, M. S. [1 ]
Subhani, T. [1 ]
机构
[1] Inst Space Technol, Dept Mat Sci & Engn, Islamabad, Pakistan
关键词
Erosion resistance; Thermal conductivity; Carbon nanotubes; Nanodiamonds; Ablation; CONDUCTIVITY; FUNCTIONALIZATION; MECHANISMS; OXIDATION; POLYMERS;
D O I
10.1179/1743289815Y.0000000036
中图分类号
TB33 [复合材料];
学科分类号
摘要
The thermal and ablative properties of carbon nanotube (CNT) and nanodiamond (ND) reinforced carbon fibre epoxy matrix composites were investigated by simulating shear forces and high temperatures using oxyacetylene torch apparatus. Three types of composite specimens-(i) carbon fibre epoxymatrix composite (CF/Epoxy), (ii) carbon fibre epoxymatrix composite containing 0.1 wt-% CNTs and 0.1 wt-% NDs, and (iii) carbon fibre epoxymatrix composite containing 0.2 wt-% CNTs and 0.2 wt-% NDs-were explored. The ablative response of composites was studied through pre- and post-burnt SEM analysis and further related with thermogravimetric analysis, weight loss profile and thermal conductivity measurements. The novel nanofiller composites showed marked improvement in their thermal and ablative properties. A 22% and 30% increase in thermal conductivity was observed for composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. These nanofillers also improved the thermal stability of thermosetting epoxy matrix, and an increase of 14% and 20% was recorded in the erosion rate of composites containing 0.1 wt-% CNTs/0.1 wt-% NDs and 0.2 wt-% CNTs/0.2 wt-% NDs respectively. This improvement is due to the increased char yield produced by the increase in the loading of nanofillers, i.e. CNTs and NDs. Insulation index and insulation to density performance have also been improved due to increased thermal conductivity and char yield.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 50 条
  • [1] Improved Ablative Properties of Nanodiamond-Reinforced Carbon Fiber-Epoxy Matrix Composites
    Farooq, Umar
    Ali, Muhammad Umair
    Hussain, Shaik Javeed
    Ahmad, Muhammad Shakeel
    Zafar, Amad
    Ghafoor, Usman
    Subhani, Tayyab
    POLYMERS, 2021, 13 (13)
  • [2] Effect of Multiwall Carbon Nanotubes on the Ablative Properties of Carbon Fiber-Reinforced Epoxy Matrix Composites
    Ahmad, Muhammad Shakeel
    Farooq, Umar
    Subhani, Tayyab
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (05) : 1529 - 1538
  • [3] Effect of Multiwall Carbon Nanotubes on the Ablative Properties of Carbon Fiber-Reinforced Epoxy Matrix Composites
    Muhammad Shakeel Ahmad
    Umar Farooq
    Tayyab Subhani
    Arabian Journal for Science and Engineering, 2015, 40 : 1529 - 1538
  • [4] Mechanical and thermal expansion properties of aligned carbon nanotube reinforced epoxy composites
    Shirasu, Keiichi
    Tamaki, Itaru
    Yamamoto, Go
    Hashida, Toshiyuki
    MECHANICAL ENGINEERING JOURNAL, 2019, 6 (03):
  • [5] Epoxy matrix composites reinforced with purified carbon nanotubes for thermal management applications
    Chen, Junjie
    Gao, Xuhui
    Song, Wenya
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2019, 30 (11) : 2770 - 2780
  • [6] Characterization of electrical and thermal properties of carbon nanotube/epoxy composites
    Gardea, Frank
    Lagoudas, Dimitris C.
    COMPOSITES PART B-ENGINEERING, 2014, 56 : 611 - 620
  • [7] Effect of Fluorination on Thermal and Mechanical Properties of Carbon Nanotube and Graphene Nanoplatelet Reinforced Epoxy Composites
    Lee, Kyeong Min
    Lee, Si-Eun
    Lee, Young-Seak
    POLYMER-KOREA, 2016, 40 (04) : 553 - 560
  • [8] Mechanical and thermal insulation properties of carbon fibre-reinforced carbon aerogel composites
    Li, Longlong
    Feng, Junzong
    Liu, Fengqi
    Li, Liangjun
    Jiang, Yonggang
    Feng, Jian
    ADVANCES IN APPLIED CERAMICS, 2022, 121 (5-8) : 222 - 230
  • [9] Carbon Nanotube Reinforced Strong Carbon Matrix Composites
    Zhang, Songlin
    Ma, Yan
    Suresh, Lakshmi
    Hao, Ayou
    Bick, Michael
    Tan, Swee Ching
    Chen, Jun
    ACS NANO, 2020, 14 (08) : 9282 - 9319
  • [10] Preparation and properties of layered carbon nanotube/polyazopyridine/nanodiamond composites
    Ashraf, Rozina
    Kausar, Ayesha
    Siddiq, Muhammad
    JOURNAL OF PLASTIC FILM & SHEETING, 2014, 30 (04) : 412 - 434