Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

被引:423
|
作者
Dong, Hao [1 ]
Yang, Guang [2 ,3 ]
Liu, Fangde [1 ]
Mo, Yuanhan [1 ]
Guo, Yike [1 ]
机构
[1] Imperial Coll London, Data Sci Inst, London SW7 2AZ, England
[2] St Georges Univ London, Neurosci Res Ctr, Mol & Clin Sci Inst, London SW17 0RE, England
[3] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2017) | 2017年 / 723卷
关键词
IMAGE; GLIOBLASTOMA; CRF;
D O I
10.1007/978-3-319-60964-5_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A major challenge in brain tumor treatment planning and quantitative evaluation is determination of the tumor extent. The noninvasive magnetic resonance imaging (MRI) technique has emerged as a front-line diagnostic tool for brain tumors without ionizing radiation. Manual segmentation of brain tumor extent from 3D MRI volumes is a very time-consuming task and the performance is highly relied on operator's experience. In this context, a reliable fully automatic segmentation method for the brain tumor segmentation is necessary for an efficient measurement of the tumor extent. In this study, we propose a fully automatic method for brain tumor segmentation, which is developed using U-Net based deep convolutional networks. Our method was evaluated on Multimodal Brain Tumor Image Segmentation (BRATS 2015) datasets, which contain 220 high-grade brain tumor and 54 low-grade tumor cases. Cross-validation has shown that our method can obtain promising segmentation efficiently.
引用
收藏
页码:506 / 517
页数:12
相关论文
共 50 条
  • [21] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [22] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [23] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [24] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [25] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [26] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [27] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [28] Brain Tumor Segmentation with Attention-based U-Net
    Li, Tuofu
    Liu, Javin Jia
    Tai, Yintao
    Tian, Yuxuan
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [29] Hypothalamus fully automatic segmentation from MR images using an U-Net based architecture
    Rodrigues, Livia
    Rezende, Thiago
    Zanesco, Ariane
    Hernandez, Ana Luisa
    Franca, Marcondes
    Rittner, Leticia
    15TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2020, 11330
  • [30] Automatic Tumor Segmentation in Digital Breast Tomosynthesis Using U-Net
    Qasem, A.
    Qin, G.
    Wang, J.
    Zhou, Z.
    MEDICAL PHYSICS, 2020, 47 (06) : E584 - E584