On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity

被引:29
作者
Esposito, Pierpaolo
Musso, Monica
Pistoia, Angela
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00100 Rome, Italy
[3] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
[4] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1112/plms/pdl020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of nodal solutions to the boundary value problem -Delta u = \u\(p-1)u in a bounded, smooth domain Omega in R-2, with homogeneous Dirichlet boundary condition, when p is a large exponent. We prove that, for p large enough, there exist at least two pairs of solutions which change sign exactly once and whose nodal lines intersect the boundary of Omega.
引用
收藏
页码:497 / 519
页数:23
相关论文
共 16 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]  
Baraket S, 1998, CALC VAR PARTIAL DIF, V6, P1
[3]  
BARTHSCH T, IN PRESS MATH ANN
[4]   On the existence and the profile of nodal solutions of elliptic equations involving critical growth [J].
Bartsch, T ;
Micheletti, AM ;
Pistoia, A .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (03) :265-282
[5]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[6]  
Bartsch T., 2003, Topol. Methods Nonlinear Anal, V22, P1, DOI [10.12775/tmna.2003.025, DOI 10.12775/TMNA.2003.025]
[7]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[8]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[9]   Singular limits in Liouville-type equations [J].
del Pino, M ;
Kowalczyk, M ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) :47-81
[10]  
El Mehdi K, 2004, ADV NONLINEAR STUD, V4, P15