A CLASS OF GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS

被引:28
作者
Shen, Yaotian [1 ]
Wang, Youjun [1 ]
机构
[1] S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
关键词
Quasilinear Schrodinger equations; critical exponents; generalized; SOLITON-SOLUTIONS; POSITIVE SOLUTIONS; GROUND-STATE; EXISTENCE;
D O I
10.3934/cpaa.2016.15.853
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of nontrivial solutions for the following quasilinear Schrodinger equation with critical Sobolev exponent: -Delta u + V(x)u - Delta[l(u(2))]l'(u(2))u = lambda u(alpha 2* 1) + h(u), x epsilon R-N, where V(x) : R-N -> R is a given potential and l, h are real functions, lambda >= 0, alpha > 1, 2* = 2N/(N - 2), N >= 3. Our results cover two physical models l(s) = s(alpha/2) and l(s) = (1 + s)(alpha/2) with alpha >= 3/2.
引用
收藏
页码:853 / 870
页数:18
相关论文
共 29 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]  
Adachi S, 2011, ADV DIFFERENTIAL EQU, V16, P289
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   Static solutions of a D-dimensional modified nonlinear Schrodinger equation [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, WJ .
NONLINEARITY, 2003, 16 (04) :1481-1497
[8]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[9]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105
[10]   Electrons on hexagonal lattices and applications to nanotubes [J].
Hartmann, B ;
Zakrzewski, WJ .
PHYSICAL REVIEW B, 2003, 68 (18)