Medical image denoising using convolutional denoising autoencoders

被引:0
|
作者
Gondara, Lovedeep [1 ]
机构
[1] Simon Fraser Univ, Dept Comp Sci, Burnaby, BC, Canada
来源
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW) | 2016年
关键词
Image denoising; denoising autoencoder; convolutional autoencoder;
D O I
10.1109/ICDMW.2016.102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These methods are however limited for requirement of large training sample size and high computational costs. In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images. Heterogeneous images can be combined to boost sample size for increased denoising performance. Simplest of networks can reconstruct images with corruption levels so high that noise and signal are not differentiable to human eye.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [1] Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography
    Lee, Donghoon
    Choi, Sunghoon
    Kim, Hee-Joung
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 884 : 97 - 104
  • [2] Image Denoising with Color Scheme by Using Autoencoders
    Ali, Irfan
    Nawaz, Haque
    Hassan, S. M.
    Maitlo, Abdullah
    Hassan, Basit
    Soomro, I.
    Zaidi, S. A. A.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (12): : 158 - 161
  • [3] Denoising Approaches Using Fuzzy Logic and Convolutional Autoencoders for Human Brain MRI Image
    Chauhan, Nishant
    Choi, Byung-Jae
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2019, 19 (03) : 135 - 139
  • [4] Temperature compensation for guided waves using convolutional denoising autoencoders
    Rautela, Mahindra
    Jayavelu, Senthilnath
    Moll, Jochen
    Gopalakrishnan, Srinivasan
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593
  • [5] Sparse Convolutional Denoising Autoencoders for Genotype Imputation
    Chen, Junjie
    Shi, Xinghua
    GENES, 2019, 10 (09)
  • [6] SINGLE CHANNEL AUDIO SOURCE SEPARATION USING CONVOLUTIONAL DENOISING AUTOENCODERS
    Grais, Emad M.
    Plumbley, Mark D.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1265 - 1269
  • [7] Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
    Chiang, Hsin-Tien
    Hsieh, Yi-Yen
    Fu, Szu-Wei
    Hung, Kuo-Hsuan
    Tsao, Yu
    Chien, Shao-Yi
    IEEE ACCESS, 2019, 7 : 60806 - 60813
  • [8] Image Denoising using Convolutional Neural Network
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXI, 2020, 11400
  • [9] Seismic noise suppression based on convolutional denoising autoencoders
    Song H.
    Gao Y.
    Chen W.
    Zhang X.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (06): : 1210 - 1219
  • [10] Medical image denoising using convolutional neural network: a residual learning approach
    Worku Jifara
    Feng Jiang
    Seungmin Rho
    Maowei Cheng
    Shaohui Liu
    The Journal of Supercomputing, 2019, 75 : 704 - 718