Bilinear Backlund transformation, Lax pair and multi-soliton solution for a vector Ramani equation

被引:8
作者
Chen, Junchao [1 ,2 ]
Feng, Bao-Feng [3 ]
Chen, Yong [2 ]
机构
[1] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[3] Univ Texas Rio Grande Valley, Dept Math, Edinburg, TX 78539 USA
来源
MODERN PHYSICS LETTERS B | 2017年 / 31卷 / 12期
基金
中国国家自然科学基金;
关键词
Vector Ramani equation; bilinear Backlund transformation; Lax pair; multi-soliton solution; pfaffian; SOLITON-SOLUTIONS; INTEGRABLE COUPLINGS; KDV EQUATION; ITO EQUATION;
D O I
10.1142/S0217984917501330
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a vector Ramani equation is proposed by using the bilinear approach. With the help of the bilinear exchange formulae, bilinear Backlund transformation and the corresponding Lax pair for the vector Ramani equation are derived. Besides, multi-soliton solution expressed by pfaffian is given and proved by pfaffian techniques.
引用
收藏
页数:16
相关论文
共 20 条
[1]   Multi-component generalizations of the Hirota-Satsuma coupled KdV equation [J].
Chen, Junchao ;
Chen, Yong ;
Feng, Bao-Feng ;
Zhu, Hanmin .
APPLIED MATHEMATICS LETTERS, 2014, 37 :15-21
[2]  
Date E., 1982, Publ. Res. Inst. Math. Sci., V18, P1077, DOI [10.2977/prims/1195183297, DOI 10.2977/PRIMS/1195183297]
[3]   Bilinear Backlund transformation and Lax pair for a coupled Ramani equation [J].
He, Yi ;
Tam, Hon-Wah .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :132-136
[4]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[5]   A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs [J].
Hirota, R ;
Hu, XB ;
Tang, XY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) :326-348
[6]  
Hirota R., 2004, The direct method in soliton theory
[7]   Lax pairs and Backlund transformations for a coupled Ramani equation and its related system [J].
Hu, XB ;
Wang, DL ;
Tam, HW .
APPLIED MATHEMATICS LETTERS, 2000, 13 (06) :45-48
[8]  
Hu XB., 1990, J. Partial Diff. Equ, V3, P87
[9]   COUPLING INTEGRABLE COUPLINGS [J].
Ma, Wen Xiu ;
Gao, Liang .
MODERN PHYSICS LETTERS B, 2009, 23 (15) :1847-1860
[10]   EXACT ONE-PERIODIC AND TWO-PERIODIC WAVE SOLUTIONS TO HIROTA BILINEAR EQUATIONS IN (2+1) DIMENSIONS [J].
Ma, Wen-Xiu ;
Zhou, Ruguang ;
Gao, Liang .
MODERN PHYSICS LETTERS A, 2009, 24 (21) :1677-1688