Smooth fractal interpolation

被引:75
作者
Navascues, M. A.
Sebastian, M. V.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
关键词
Classical Method; Interpolation Error; Fractal Function; General Frame; Fractal Technique;
D O I
10.1155/JIA/2006/78734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any smooth interpolant by means of a family of fractal functions. In particular, the elements of the class can be defined so that the smoothness of the original is preserved. Under some hypotheses, bounds of the interpolation error for function and derivatives are obtained. A set of interpolating mappings associated to a cubic spline is defined and the density of fractal cubic splines in H-2[a, b] is proven.
引用
收藏
页数:20
相关论文
共 14 条
[1]  
Ahlberg JH., 1967, The Theory of Splines and Their Applications
[2]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[3]   THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
HARRINGTON, AN .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) :14-34
[4]  
Barnsley MF., 1988, Fractals Everywhere
[5]   Generalized cubic spline fractal interpolation functions [J].
Chand, A. K. B. ;
Kapoor, G. P. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :655-676
[6]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .I. 1 DIMENSIONAL PROBLEM [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1967, 9 (05) :394-&
[7]   OPTIMAL ERROR BOUNDS FOR CUBIC SPLINE INTERPOLATION [J].
HALL, CA ;
MEYER, WW .
JOURNAL OF APPROXIMATION THEORY, 1976, 16 (02) :105-122
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]  
Laurent P-J., 1972, Approximation et optimisation
[10]   Fitting curves by fractal interpolation: An application to the quantification of cognitive brain processes [J].
Navascues, MA ;
Sebastian, MV .
THINKING IN PATTERNS: FRACTALS AND RELATED PHENOMENA IN NATURE, 2004, :143-154