Event-Based Color Segmentation With a High Dynamic Range Sensor

被引:14
|
作者
Marcireau, Alexandre [1 ]
Ieng, Sio-Hoi [1 ]
Simon-Chane, Camille [1 ,2 ]
Benosman, Ryad B. [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, INSERM, CNRS,UMRI S 968,UMR S 968,UMR 7210,Inst Vis, Paris, France
[2] Univ Cergy Pontoise, Univ Paris Seine, ETIS UMR 8051, ENSEA,CNRS, Paris, France
来源
FRONTIERS IN NEUROSCIENCE | 2018年 / 12卷
关键词
event-based signal processing; AER; color segmentation; tracking; silicon retina; OBJECT SEGMENTATION; MEAN-SHIFT; EXTRACTION; ALGORITHM; TRACKING; VISION;
D O I
10.3389/fnins.2018.00135
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper introduces a color asynchronous neuromorphic event-based camera and a methodology to process color output from the device to perform color segmentation and tracking at the native temporal resolution of the sensor (down to one microsecond). Our color vision sensor prototype is a combination of three Asynchronous Time-based Image Sensors, sensitive to absolute color information. We devise a color processing algorithm leveraging this information. It is designed to be computationally cheap, thus showing how low level processing benefits from asynchronous acquisition and high temporal resolution data. The resulting color segmentation and tracking performance is assessed both with an indoor controlled scene and two outdoor uncontrolled scenes. The tracking's mean error to the ground truth for the objects of the outdoor scenes ranges from two to twenty pixels.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Dynamic Resolution Event-based Temporal Contrast Vision Sensor
    Guo, Heng
    Huang, Jing
    Guo, Menghan
    Chen, Shoushun
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1422 - 1425
  • [2] Out of the Room: Generalizing Event-Based Dynamic Motion Segmentation for Complex Scenes
    Zurich Research Center, Huawei Technologies, Switzerland
    不详
    Proc. - Int. Conf. 3D Vis., 3DV, (442-452):
  • [3] Out of the Room: Generalizing Event-Based Dynamic Motion Segmentation for Complex Scenes
    Georgoulis, Stamatios
    Ren, Weining
    Bochicchio, Alfredo
    Eckert, Daniel
    Li, Yuanyou
    Gawel, Abel
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 442 - 452
  • [4] Event-Based Sensor Service Composition
    Koyama, Junta
    Murakami, Yohei
    Lin, Donghui
    Ishida, Toru
    2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2016, : 263 - 264
  • [5] Event-Based Motion Segmentation by Motion Compensation
    Stoffregen, Timo
    Gallego, Guillermo
    Drummond, Tom
    Kleeman, Lindsay
    Scaramuzza, Davide
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7243 - 7252
  • [6] A high dynamic range image sensor with linear response based on asynchronous event detection
    Lenero-Bardallo, Juan A.
    Carmona-Galan, R.
    Rodriguez-Vazquez, A.
    2015 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN (ECCTD), 2015, : 73 - 76
  • [7] Event-Based Semantic Segmentation With Posterior Attention
    Jia, Zexi
    You, Kaichao
    He, Weihua
    Tian, Yang
    Feng, Yongxiang
    Wang, Yaoyuan
    Jia, Xu
    Lou, Yihang
    Zhang, Jingyi
    Li, Guoqi
    Zhang, Ziyang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1829 - 1842
  • [8] Event-Based American Sign Language Recognition Using Dynamic Vision Sensor
    Wang, Yong
    Zhang, Xian
    Wang, Yanxiang
    Wang, Hongbin
    Huang, Chanying
    Shen, Yiran
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 3 - 10
  • [9] Event-Based Dynamic Graph Visualisation
    Simonetto, Paolo
    Archambault, Daniel
    Kobourov, Stephen
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (07) : 2373 - 2386
  • [10] Situated Sensor Composition for Event-based System
    Koyama, Junta
    Murakami, Yohei
    Lin, Donghui
    2017 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC), 2017, : 212 - 219