Identification of nonlinear systems using adaptive variable-order fractional neural networks (Case study: A wind turbine with practical results)

被引:29
|
作者
Aslipour, Zeinab [1 ]
Yazdizadeh, Alireza [1 ]
机构
[1] Shahid Beheshti Univ, Dept Elect Engn, Tehran 1983969411, Iran
关键词
Variable-order fractional model; Dynamic neural network; Nonlinear system identification; Wind turbine; MODEL;
D O I
10.1016/j.engappai.2019.06.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a Variable-Order Fractional Single-layer Neural Network (VOFSNN) and a Variable-Order Fractional Multi-layer Neural Network (VOFMNN) are proposed to identify nonlinear systems assuming all the system states are measurable. Fractional Lyapunov-like approach and Gronwall-Bellman integral inequality are employed to prove stability and asymptotic stability conditions of the identification error dynamics. A set of novel stable learning rules for the fractional order, the hidden layer weights and the output layer weights are derived to update the proposed VOFSNN and VOFMNN parameters. The proposed methods capabilities are evaluated and confirmed by the practical data gathered from a wind turbine under operation in a wind farm.
引用
收藏
页码:462 / 473
页数:12
相关论文
共 50 条
  • [21] A computational method for a class of systems of nonlinear variable-order fractional quadratic integral equations
    Heydari, M. H.
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 164 - 178
  • [22] Variable neural networks for adaptive control of nonlinear systems
    Liu, GPP
    Kadirkamanathan, V
    Billings, SA
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1999, 29 (01): : 34 - 43
  • [23] Fractional ordering of activation functions for neural networks: A case study on Texas wind turbine
    Ramadevi, Bhukya
    Kasi, Venkata Ramana
    Bingi, Kishore
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [24] Sliding mode control for memristor-based variable-order fractional delayed neural networks
    Xi, Huiling
    Zhang, Ruixia
    CHINESE JOURNAL OF PHYSICS, 2022, 77 : 572 - 582
  • [25] Adaptive finite-time synchronisation of variable-order fractional chaotic systems for secure communication
    Yu, Zheqi
    Liu, Peter X.
    Ling, Song
    Wang, Huanqing
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (02) : 317 - 331
  • [26] On the dynamical investigation and synchronization of variable-order fractional neural networks: the Hopfield-like neural network model
    Hadi Jahanshahi
    Ernesto Zambrano-Serrano
    Stelios Bekiros
    Zhouchao Wei
    Christos Volos
    Oscar Castillo
    Ayman A. Aly
    The European Physical Journal Special Topics, 2022, 231 : 1757 - 1769
  • [27] On the dynamical investigation and synchronization of variable-order fractional neural networks: the Hopfield-like neural network model
    Jahanshahi, Hadi
    Zambrano-Serrano, Ernesto
    Bekiros, Stelios
    Wei, Zhouchao
    Volos, Christos
    Castillo, Oscar
    Aly, Ayman A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (10): : 1757 - 1769
  • [28] Numerical solution of fractal-fractional Mittag–Leffler differential equations with variable-order using artificial neural networks
    C. J. Zúñiga-Aguilar
    J. F. Gómez-Aguilar
    H. M. Romero-Ugalde
    R. F. Escobar-Jiménez
    G. Fernández-Anaya
    Fawaz E. Alsaadi
    Engineering with Computers, 2022, 38 : 2669 - 2682
  • [29] Practical and exact synchronization of complex networks of fractional order nonlinear systems
    Martínez-Martínez, Rafael
    Lugo-Peñaloza, Armando Fabián
    León, Jorge A.
    Fernández-Anaya, Guillermo
    Open Cybernetics and Systemics Journal, 2013, 7 (01): : 47 - 54
  • [30] On-line identification and adaptive control of nonlinear systems using neural networks
    Vassiljeva, K
    Rüstern, E
    BEC 2004: PROCEEDING OF THE 9TH BIENNIAL BALTIC ELECTRONICS CONFERENCE, 2004, : 149 - 152