Test vectors and central L-values for GL(2)

被引:15
作者
File, Daniel [1 ]
Martin, Kimball [2 ]
Pitale, Ameya [2 ]
机构
[1] Muhlenberg Coll, Dept Math, Allentown, PA 18104 USA
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
modular forms; test vectors; periods; L-values; ADIC L-FUNCTIONS; SUPERCUSPIDAL REPRESENTATIONS; L-SERIES; AVERAGES; CHARACTERS;
D O I
10.2140/ant.2017.11.253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine local test vectors for Waldspurger functionals for GL(2), in the case where both the representation of GL(2) and the character of the degree two extension are ramified, with certain restrictions. We use this to obtain an explicit version of Waldspurger's formula relating twisted central L-values of automorphic representations on GL(2) with certain toric period integrals. As a consequence, we generalize an average value formula of Feigon and Whitehouse, and obtain some nonvanishing results.
引用
收藏
页码:253 / 318
页数:66
相关论文
共 41 条
[1]  
Bushnell C. J., 2006, GRUNDLEHREN METH WIS, V335
[2]   Supercuspidal representations of GLn:: Explicit Whittaker functions [J].
Bushnell, CJ ;
Henniart, G .
JOURNAL OF ALGEBRA, 1998, 209 (01) :270-287
[3]   Explicit Gross-Zagier and Waldspurger formulae [J].
Cai, Li ;
Shu, Jie ;
Tian, Ye .
ALGEBRA & NUMBER THEORY, 2014, 8 (10) :2523-2572
[4]   AVERAGES OF CENTRAL L-VALUES OF HILBERT MODULAR FORMS WITH AN APPLICATION TO SUBCONVEXITY [J].
Feigon, Brooke ;
Whitehouse, David .
DUKE MATHEMATICAL JOURNAL, 2009, 149 (02) :347-410
[5]  
FURUSAWA M, 1993, J REINE ANGEW MATH, V438, P187
[6]  
Gelbart Stephen S., 1975, ANN MATH STUDIES, V83
[7]  
Gross Benedict H., 1987, CMS C P, V7, P115
[8]   TEST VECTORS FOR LINEAR-FORMS [J].
GROSS, BH ;
PRASAD, D .
MATHEMATISCHE ANNALEN, 1991, 291 (02) :343-355
[9]   LOCAL ORDERS, ROOT NUMBERS, AND MODULAR-CURVES [J].
GROSS, BH .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (06) :1153-1182
[10]   Special values of anticyclotomic L-functions modulo λ [J].
Hamieh, Alia .
MANUSCRIPTA MATHEMATICA, 2014, 145 (3-4) :449-472