Kerogen nanoscale structure and CO2 adsorption in shale micropores

被引:29
作者
Gonciaruk, Aleksandra [1 ]
Hall, Matthew R. [1 ,2 ]
Fay, Michael W. [3 ]
Parmenter, Christopher D. J. [3 ]
Vane, Christopher H. [2 ]
Khlobystov, Andrei N. [3 ,4 ]
Ripepi, Nino [5 ]
机构
[1] Univ Nottingham, GeoEnergy Res Ctr GERC, Univ Pk, Nottingham NG7 2RD, England
[2] British Geol Survey, Ctr Environm Sci, Nottingham NG12 5GG, England
[3] Univ Nottingham, Nanoscale & Microscale Res Ctr, Univ Pk, Nottingham NG7 2RD, England
[4] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
[5] Virginia Polytech Inst & State Univ, Dept Min & Minerals Engn, Blacksburg, VA 24060 USA
基金
英国工程与自然科学研究理事会;
关键词
CARBON; METHANE;
D O I
10.1038/s41598-021-83179-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
Auroux A, 2013, CALORIMETRY THERMAL, DOI [10.1007/978-3-642-11954-5, DOI 10.1007/978-3-642-11954-5]
[2]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[3]   NANOSCALE CARBON-BLACKS PRODUCED BY CO2-LASER PYROLYSIS [J].
BI, XX ;
JAGTOYEN, M ;
ENDO, M ;
DASCHOWDHURY, K ;
OCHOA, R ;
DERBYSHIRE, FJ ;
DRESSELHAUS, MS ;
EKLUND, PC .
JOURNAL OF MATERIALS RESEARCH, 1995, 10 (11) :2875-2884
[4]   Utica Shale Play Oil and Gas Brines: Geochemistry and Factors Influencing Wastewater Management [J].
Blondes, Madalyn S. ;
Shelton, Jenna L. ;
Engle, Mark A. ;
Trembly, Jason P. ;
Doolan, Colin A. ;
Jubb, Aaron M. ;
Chenault, Jessica C. ;
Rowan, Elisabeth L. ;
Haefner, Ralph J. ;
Mailot, Brian E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (21) :13917-13925
[5]  
Bousige C, 2016, NAT MATER, V15, P576, DOI [10.1038/nmat4541, 10.1038/NMAT4541]
[6]   Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited [J].
Carvajal-Ortiz, H. ;
Gentzis, T. .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2015, 152 :113-122
[7]   The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia, Canada [J].
Chalmers, Gareth R. L. ;
Bustin, R. Marc .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2007, 70 (1-3) :223-239
[8]   Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method [J].
Chen, Guohui ;
Lu, Shuangfang ;
Zhang, Junfang ;
Xue, Qingzhong ;
Han, Tongcheng ;
Xue, Haitao ;
Tian, Shansi ;
Li, Jinbu ;
Xu, Chenxi ;
Pervukhina, Marina ;
Clennell, Ben .
SCIENTIFIC REPORTS, 2016, 6
[9]  
Curtis M. E., 2011, N AM UNCONVENTIONAL, V10
[10]   Development of organic porosity in the Woodford Shale with increasing thermal maturity [J].
Curtis, Mark E. ;
Cardott, Brian J. ;
Sondergeld, Carl H. ;
Rai, Chandra S. .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2012, 103 :26-31