ON THE LARGEST COMPONENT OF THE CRITICAL RANDOM DIGRAPH

被引:0
作者
Coulson, M. [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2019年 / 88卷 / 03期
关键词
RANDOM GRAPH; EVOLUTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the largest component of the random digraph D(n, p) inside the critical window p = n(-1) + lambda n(-4/3). We show that the largest component C-1 has size of order n(1/3) in this range. In particular we give explicit bounds on the probabilities that vertical bar C-1 vertical bar n(-1/3) is very large or very small that are analogous to those given by Nachmias and Peres for G(n, p).
引用
收藏
页码:567 / 572
页数:6
相关论文
共 14 条
[1]   THE EVOLUTION OF RANDOM GRAPHS [J].
BOLLOBAS, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 286 (01) :257-274
[2]  
Coulson M., ARXIV190500624
[3]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[4]  
Janson S., 2000, Wiley-Interscience Series in Discrete Mathematics and Optimization, DOI 10.1002/9781118032718
[5]  
Karp R. M., 1990, Random Structures Algorithms, V1, P73, DOI [10.1002/rsa.3240010106, DOI 10.1002/RSA.3240010106]
[6]   THE PHASE-TRANSITION IN THE EVOLUTION OF RANDOM DIGRAPHS [J].
LUCZAK, T .
JOURNAL OF GRAPH THEORY, 1990, 14 (02) :217-223
[7]  
Luczak T., 1990, Random Structures & Algorithms, V1, P287, DOI [10.1002/rsa.3240010305, DOI 10.1002/RSA.3240010305]
[8]   The Critical Behavior of Random Digraphs [J].
Luczak, Tomasz ;
Seierstad, Taral Guldahl .
RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) :271-293
[10]  
MCDIARD C, 1980, MATH PROGRAM STUD, V13, P17, DOI 10.1007/BFb0120903