Breather solutions of the nonlocal nonlinear self-focusing Schrodinger equation

被引:33
作者
Zhong, Wei-Ping [1 ]
Yang, Zhengping [2 ]
Belic, Milivoj [3 ]
Zhong, WenYe [4 ]
机构
[1] Shunde Polytech, Dept Elect Engn, Shunde 528300, Guangdong, Peoples R China
[2] Shunde Polytech, Dept Med Sci, Shunde 528300, Guangdong, Peoples R China
[3] Texas A&M Univ Qatar, Doha 23874, Qatar
[4] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
关键词
Nonlocal nonlinear Schrodinger equation; Breather; The Hirota bilinear method;
D O I
10.1016/j.physleta.2021.127228
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The first- and second-order breather solutions of the self-focusing nonlocal nonlinear Schrodinger (NNLS) equation are obtained by employing Hirota's bilinear method. The NNSE also happens to be an example of Schrodinger equation with parity-time (PT) symmetry. With the help of recurrence relations in the Hirota bilinear form, the nth-order breather solutions on the nonzero background of the NNLS equation are obtained, and the collision, superposition and separation of transmission modes is studied respectively. When the parameters describing these breathers are selected as some special values, they display plentiful spatial structures which provide effective methods for controlling the localized optical waves in nonlocal nonlinear media. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 19 条
[1]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]   Recent progress in investigating optical rogue waves [J].
Akhmediev, N. ;
Dudley, J. M. ;
Solli, D. R. ;
Turitsyn, S. K. .
JOURNAL OF OPTICS, 2013, 15 (06)
[4]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[5]   Roadmap on optical rogue waves and extreme events [J].
Akhmediev, Nail ;
Kibler, Bertrand ;
Baronio, Fabio ;
Belic, Milivoj ;
Zhong, Wei-Ping ;
Zhang, Yiqi ;
Chang, Wonkeun ;
Soto-Crespo, Jose M. ;
Vouzas, Peter ;
Grelu, Philippe ;
Lecaplain, Caroline ;
Hammani, K. ;
Rica, S. ;
Picozzi, A. ;
Tlidi, Mustapha ;
Panajotov, Krassimir ;
Mussot, Arnaud ;
Bendahmane, Abdelkrim ;
Szriftgiser, Pascal ;
Genty, Goery ;
Dudley, John ;
Kudlinski, Alexandre ;
Demircan, Ayhan ;
Morgner, Uwe ;
Amiraranashvili, Shalva ;
Bree, Carsten ;
Steinmeyer, Guenter ;
Masoller, C. ;
Broderick, Neil G. R. ;
Runge, Antoine F. J. ;
Erkintalo, Miro ;
Residori, S. ;
Bortolozzo, U. ;
Arecchi, F. T. ;
Wabnitz, Stefan ;
Tiofack, C. G. ;
Coulibaly, S. ;
Taki, M. .
JOURNAL OF OPTICS, 2016, 18 (06)
[6]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   Peregrine rogue wave dynamics in the continuous nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity [J].
Gupta, Samit Kumar ;
Sarma, Amarendra K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 :141-147
[9]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809
[10]   Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits [J].
Kedziora, David J. ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2012, 85 (06)