Ellipsoidal techniques for reachability analysis of discrete-time linear systems

被引:144
作者
Kurzhanskiy, Alex A. [1 ]
Varaiya, Pravin [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ellipsoidal methods; reach sets; regularization; singular discrete-time systems; COMPUTATION;
D O I
10.1109/TAC.2006.887900
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the computation of reach sets for discrete-time linear control systems with time-varying coefficients and ellipsoidal bounds on the controls and initial conditions. The algorithms construct external and internal ellipsoidal approximations that touch the reach set boundary from outside and from inside. Recurrence relations describe the time evolution of these approximations. An essential part of the paper deals with singular discrete-time linear systems.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 2000, OPTIMIZATION METHODS
[2]   How good are convex hull algorithms? [J].
Avis, D ;
Bremner, D ;
Seidel, R .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (5-6) :265-301
[3]  
Csanky L., 1976, SIAM Journal on Computing, V5, P618, DOI 10.1137/0205040
[4]  
GIRARD A, 2005, LECT NOTES COMPUTER, V1790, P31
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS, V3rd
[6]   Control synthesis via parallelotopes:: Optimization and parallel computations [J].
Kostousova, EK .
OPTIMIZATION METHODS & SOFTWARE, 2001, 14 (04) :267-310
[7]  
Kvasnica M, 2004, LECT NOTES COMPUT SC, V2993, P448
[8]   Symbolic reachability computation for families of linear vector fields [J].
Lafferriere, G ;
Pappas, GJ ;
Yovine, S .
JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (03) :231-253
[9]  
Mitchell I., 2000, LECT NOTES COMPUTER, V1790, P21
[10]  
Motzkin T.S., 1953, Contributions to Theory of Games, V2