Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation

被引:29
作者
Weber, Sebastian [1 ,2 ]
Abel, Ken L. [3 ]
Zimmermann, Ronny T. [4 ]
Huang, Xiaohui [5 ,6 ]
Bremer, Jens [7 ]
Rihko-Struckmann, Liisa K. [7 ]
Batey, Darren [8 ]
Cipiccia, Silvia [8 ]
Titus, Juliane [3 ]
Poppitz, David [3 ]
Kuebel, Christian [5 ,6 ,9 ]
Sundmacher, Kai [4 ,7 ]
Glaeser, Roger [3 ]
Sheppard, Thomas L. [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany
[3] Univ Leipzig, Inst Chem Technol, Linnestr 3, D-04103 Leipzig, Germany
[4] Otto von Guericke Univ, Inst Proc Engn, Chair Proc Syst Engn, Univ Pl 2, D-39106 Magdeburg, Germany
[5] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[6] Tech Univ Darmstadt, Dept Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[7] Max Planck Inst Magdeburg, Dept Proc Syst Engn, Sandtorstr 1, D-39106 Magdeburg, Germany
[8] Diamond Light Source, Harwell Sci & Innovat Campus,Fermi Ave, Didcot OX11 0DE, Oxon, England
[9] Karlsruhe Inst Technol KIT, Karlsruhe Nano Micro Facil, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
methanation; carbon dioxide; hierarchical porosity; nickel; alumina; tomography; porosity analysis; COMPUTED-TOMOGRAPHY; PARTIAL OXIDATION; NIAL2O4; SPINEL; ELECTRON; NICKEL; ALUMINA; RECONSTRUCTION; HYDROGENATION; DISTRIBUTIONS; DIFFRACTION;
D O I
10.3390/catal10121471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 methanation is often performed on Ni/Al2O3 catalysts, which can suffer from mass transport limitations and, therefore, decreased efficiency. Here we show the application of a hierarchically porous Ni/Al2O3 catalyst for methanation of CO2. The material has a well-defined and connected meso- and macropore structure with a total porosity of 78%. The pore structure was thoroughly studied with conventional methods, i.e., N-2 sorption, Hg porosimetry, and He pycnometry, and advanced imaging techniques, i.e., electron tomography and ptychographic X-ray computed tomography. Tomography can quantify the pore system in a manner that is not possible using conventional porosimetry. Macrokinetic simulations were performed based on the measures obtained by porosity analysis. These show the potential benefit of enhanced mass-transfer properties of the hierarchical pore system compared to a pure mesoporous catalyst at industrially relevant conditions. Besides the investigation of the pore system, the catalyst was studied by Rietveld refinement, diffuse reflectance ultraviolet-visible (DRUV/vis) spectroscopy, and H-2-temperature programmed reduction (TPR), showing a high reduction temperature required for activation due to structural incorporation of Ni into the transition alumina. The reduced hierarchically porous Ni/Al2O3 catalyst is highly active in CO2 methanation, showing comparable conversion and selectivity for CH4 to an industrial reference catalyst.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 69 条
[31]   Partial oxidation of methane to syngas on bulk NiAl2O4 catalyst. Comparison with alumina supported nickel, platinum and rhodium catalysts [J].
Lopez-Fonseca, Ruben ;
Jimenez-Gonzalez, Cristina ;
de Rivas, Beatriz ;
Gutierrez-Ortiz, Jose I. .
APPLIED CATALYSIS A-GENERAL, 2012, 437 :53-62
[32]   Cooperation Between Active Metal and Basic Support in Ni-Based Catalyst for Low-Temperature CO2 Methanation [J].
Ma, Yuan ;
Liu, Jiao ;
Chu, Mo ;
Yue, Junrong ;
Cui, Yanbin ;
Xu, Guangwen .
CATALYSIS LETTERS, 2020, 150 (05) :1418-1426
[33]   Nickel-containing hybrid ceramics derived from polysiloxanes with hierarchical porosity for CO2 methanation [J].
Macedo, Heloisa P. ;
Medeiros, Rodolfo L. B. A. ;
Ilsemann, Jan ;
Melo, Dulce M. A. ;
Rezwan, Kurosch ;
Wilhelm, Michaela .
MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 278 (156-166) :156-166
[34]   High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects [J].
Martinez, Jeremias ;
Hernandez, Edgar ;
Alfaro, Salvador ;
Lopez Medina, Ricardo ;
Valverde Aguilar, Guadalupe ;
Albiter, Elim ;
Valenzuela, Miguel A. .
CATALYSTS, 2019, 9 (01)
[35]   TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy [J].
Messaoudil, Cedric ;
Boudier, Thomas ;
Oscar Sanchez Sorzano, Carlos ;
Marco, Sergio .
BMC BIOINFORMATICS, 2007, 8 (1)
[36]   Catalysis mechanisms of CO2 and CO methanation [J].
Miao, Bin ;
Ma, Su Su Khine ;
Wang, Xin ;
Su, Haibin ;
Chan, Siew Hwa .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (12) :4048-4058
[37]   Surfactant-Free Sol-Gel Synthesis Method for the Preparation of Mesoporous High Surface Area NiO-Al2O3 Nanopowder and Its Application in Catalytic CO2 Methanation [J].
Moghaddam, Shima Valinejad ;
Rezaei, Mehran ;
Meshkani, Fereshteh .
ENERGY TECHNOLOGY, 2020, 8 (01)
[38]   Understanding the gas transport in porous catalyst layers by using digital reconstruction techniques [J].
Novak, Vladimir ;
Dudak, Michal ;
Koci, Petr ;
Marek, Milos .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2015, 9 :16-26
[39]   Alignment methods for nanotomography with deep subpixel accuracy [J].
Odstrcil, Michal ;
Holler, Mirko ;
Raabe, Joerg ;
Guizar-Sicairos, Manuel .
OPTICS EXPRESS, 2019, 27 (25) :36637-36652
[40]  
ONEILL HS, 1991, PHYS CHEM MINER, V18, P302