Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation

被引:29
作者
Weber, Sebastian [1 ,2 ]
Abel, Ken L. [3 ]
Zimmermann, Ronny T. [4 ]
Huang, Xiaohui [5 ,6 ]
Bremer, Jens [7 ]
Rihko-Struckmann, Liisa K. [7 ]
Batey, Darren [8 ]
Cipiccia, Silvia [8 ]
Titus, Juliane [3 ]
Poppitz, David [3 ]
Kuebel, Christian [5 ,6 ,9 ]
Sundmacher, Kai [4 ,7 ]
Glaeser, Roger [3 ]
Sheppard, Thomas L. [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany
[3] Univ Leipzig, Inst Chem Technol, Linnestr 3, D-04103 Leipzig, Germany
[4] Otto von Guericke Univ, Inst Proc Engn, Chair Proc Syst Engn, Univ Pl 2, D-39106 Magdeburg, Germany
[5] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[6] Tech Univ Darmstadt, Dept Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[7] Max Planck Inst Magdeburg, Dept Proc Syst Engn, Sandtorstr 1, D-39106 Magdeburg, Germany
[8] Diamond Light Source, Harwell Sci & Innovat Campus,Fermi Ave, Didcot OX11 0DE, Oxon, England
[9] Karlsruhe Inst Technol KIT, Karlsruhe Nano Micro Facil, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
methanation; carbon dioxide; hierarchical porosity; nickel; alumina; tomography; porosity analysis; COMPUTED-TOMOGRAPHY; PARTIAL OXIDATION; NIAL2O4; SPINEL; ELECTRON; NICKEL; ALUMINA; RECONSTRUCTION; HYDROGENATION; DISTRIBUTIONS; DIFFRACTION;
D O I
10.3390/catal10121471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 methanation is often performed on Ni/Al2O3 catalysts, which can suffer from mass transport limitations and, therefore, decreased efficiency. Here we show the application of a hierarchically porous Ni/Al2O3 catalyst for methanation of CO2. The material has a well-defined and connected meso- and macropore structure with a total porosity of 78%. The pore structure was thoroughly studied with conventional methods, i.e., N-2 sorption, Hg porosimetry, and He pycnometry, and advanced imaging techniques, i.e., electron tomography and ptychographic X-ray computed tomography. Tomography can quantify the pore system in a manner that is not possible using conventional porosimetry. Macrokinetic simulations were performed based on the measures obtained by porosity analysis. These show the potential benefit of enhanced mass-transfer properties of the hierarchical pore system compared to a pure mesoporous catalyst at industrially relevant conditions. Besides the investigation of the pore system, the catalyst was studied by Rietveld refinement, diffuse reflectance ultraviolet-visible (DRUV/vis) spectroscopy, and H-2-temperature programmed reduction (TPR), showing a high reduction temperature required for activation due to structural incorporation of Ni into the transition alumina. The reduced hierarchically porous Ni/Al2O3 catalyst is highly active in CO2 methanation, showing comparable conversion and selectivity for CH4 to an industrial reference catalyst.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 69 条
[11]   Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni-Al2O3 catalysts prepared by ultrasound-assisted co-precipitation method [J].
Daroughegi, Reihaneh ;
Meshkani, Fereshteh ;
Rezaei, Mehran .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (22) :15115-15125
[12]   Mercury porosimetry - An inappropriate method for the measurement of pore size distributions in cement-based materials [J].
Diamond, S .
CEMENT AND CONCRETE RESEARCH, 2000, 30 (10) :1517-1525
[13]   Ptychographic X-ray computed tomography at the nanoscale [J].
Dierolf, Martin ;
Menzel, Andreas ;
Thibault, Pierre ;
Schneider, Philipp ;
Kewish, Cameron M. ;
Wepf, Roger ;
Bunk, Oliver ;
Pfeiffer, Franz .
NATURE, 2010, 467 (7314) :436-U82
[14]   Correlative Multiscale 3D Imaging of a Hierarchical Nanoporous Gold Catalyst by Electron, Ion and X-ray Nanotomography [J].
Fam, Yakub ;
Sheppard, Thomas L. ;
Diaz, Ana ;
Scherer, Torsten ;
Holler, Mirko ;
Wang, Wu ;
Wang, Di ;
Brenner, Patrice ;
Wittstock, Arne ;
Grunwaldt, Jan-Dierk .
CHEMCATCHEM, 2018, 10 (13) :2858-2867
[15]   Electron Tomography for Heterogeneous Catalysts and Related Nanostructured Materials [J].
Friedrich, Heiner ;
de Jongh, Petra E. ;
Verkleij, Arie J. ;
de Jong, Krijn P. .
CHEMICAL REVIEWS, 2009, 109 (05) :1613-1629
[16]   Supported Catalysts for CO2 Methanation: A Review [J].
Frontera, Patrizia ;
Macario, Anastasia ;
Ferraro, Marco ;
Antonucci, PierLuigi .
CATALYSTS, 2017, 7 (02)
[17]   Recent advances in methanation catalysts for the production of synthetic natural gas [J].
Gao, Jiajian ;
Liu, Qing ;
Gu, Fangna ;
Liu, Bin ;
Zhong, Ziyi ;
Su, Fabing .
RSC ADVANCES, 2015, 5 (29) :22759-22776
[18]   Power-to-Methane: A state-of-the-art review [J].
Ghaib, Karim ;
Ben-Fares, Fatima-Zahrae .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :433-446
[20]   Hierarchically Structured Porous Spinels via an Epoxide-Mediated Sol-Gel Process Accompanied by Polymerization-Induced Phase Separation [J].
Herwig, Jan ;
Titus, Juliane ;
Kullmann, Jens ;
Wilde, Nicole ;
Hahn, Thomas ;
Glaeser, Roger ;
Enke, Dirk .
ACS OMEGA, 2018, 3 (01) :1201-1212