Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation

被引:29
作者
Weber, Sebastian [1 ,2 ]
Abel, Ken L. [3 ]
Zimmermann, Ronny T. [4 ]
Huang, Xiaohui [5 ,6 ]
Bremer, Jens [7 ]
Rihko-Struckmann, Liisa K. [7 ]
Batey, Darren [8 ]
Cipiccia, Silvia [8 ]
Titus, Juliane [3 ]
Poppitz, David [3 ]
Kuebel, Christian [5 ,6 ,9 ]
Sundmacher, Kai [4 ,7 ]
Glaeser, Roger [3 ]
Sheppard, Thomas L. [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany
[3] Univ Leipzig, Inst Chem Technol, Linnestr 3, D-04103 Leipzig, Germany
[4] Otto von Guericke Univ, Inst Proc Engn, Chair Proc Syst Engn, Univ Pl 2, D-39106 Magdeburg, Germany
[5] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[6] Tech Univ Darmstadt, Dept Mat & Earth Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[7] Max Planck Inst Magdeburg, Dept Proc Syst Engn, Sandtorstr 1, D-39106 Magdeburg, Germany
[8] Diamond Light Source, Harwell Sci & Innovat Campus,Fermi Ave, Didcot OX11 0DE, Oxon, England
[9] Karlsruhe Inst Technol KIT, Karlsruhe Nano Micro Facil, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
methanation; carbon dioxide; hierarchical porosity; nickel; alumina; tomography; porosity analysis; COMPUTED-TOMOGRAPHY; PARTIAL OXIDATION; NIAL2O4; SPINEL; ELECTRON; NICKEL; ALUMINA; RECONSTRUCTION; HYDROGENATION; DISTRIBUTIONS; DIFFRACTION;
D O I
10.3390/catal10121471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 methanation is often performed on Ni/Al2O3 catalysts, which can suffer from mass transport limitations and, therefore, decreased efficiency. Here we show the application of a hierarchically porous Ni/Al2O3 catalyst for methanation of CO2. The material has a well-defined and connected meso- and macropore structure with a total porosity of 78%. The pore structure was thoroughly studied with conventional methods, i.e., N-2 sorption, Hg porosimetry, and He pycnometry, and advanced imaging techniques, i.e., electron tomography and ptychographic X-ray computed tomography. Tomography can quantify the pore system in a manner that is not possible using conventional porosimetry. Macrokinetic simulations were performed based on the measures obtained by porosity analysis. These show the potential benefit of enhanced mass-transfer properties of the hierarchical pore system compared to a pure mesoporous catalyst at industrially relevant conditions. Besides the investigation of the pore system, the catalyst was studied by Rietveld refinement, diffuse reflectance ultraviolet-visible (DRUV/vis) spectroscopy, and H-2-temperature programmed reduction (TPR), showing a high reduction temperature required for activation due to structural incorporation of Ni into the transition alumina. The reduced hierarchically porous Ni/Al2O3 catalyst is highly active in CO2 methanation, showing comparable conversion and selectivity for CH4 to an industrial reference catalyst.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 69 条
[1]   AN ASSESSMENT OF POROSITY AND PORE SIZES IN HARDENED CEMENT PASTES [J].
ALFORD, NM ;
RAHMAN, AA .
JOURNAL OF MATERIALS SCIENCE, 1981, 16 (11) :3105-3114
[2]   Three-dimensional structure analysis by X-ray micro-computed tomography of macroporous alumina templated with expandable microspheres [J].
Andersson, Linnea ;
Jones, Anthony C. ;
Knackstedt, Mark A. ;
Bergstrom, Lennart .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (12) :2547-2554
[3]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[4]   3D imaging of nanomaterials by discrete tomography [J].
Batenburg, K. J. ;
Bals, S. ;
Sijbers, J. ;
Kuebel, C. ;
Midgley, P. A. ;
Hernandez, J. C. ;
Kaiser, U. ;
Encina, E. R. ;
Coronado, E. A. ;
Van Tendeloo, G. .
ULTRAMICROSCOPY, 2009, 109 (06) :730-740
[5]  
Batey D., 2018, Microsc. Microanal, V24, P42, DOI [10.1017/S1431927618012631, DOI 10.1017/S1431927618012631]
[6]  
Batey D. J., 2014, THESIS
[7]   Mapping the Pore Architecture of Structured Catalyst Monoliths from Nanometer to Centimeter Scale with Electron and X-ray Tomographies [J].
Becher, Johannes ;
Sheppard, Thomas L. ;
Fam, Yakub ;
Baier, Sina ;
Wang, Wu ;
Wang, Di ;
Kulkarni, Satishkumar ;
Keller, Thomas F. ;
Lyubomirskiy, Mikhail ;
Brueckner, Dennis ;
Kahnt, Maik ;
Schropp, Andreas ;
Schroer, Christian G. ;
Grunwaldt, Jan-Dierk .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (41) :25197-25208
[8]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[9]   TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C plus [J].
Coelho, Alan A. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 :210-218
[10]  
CONNER WC, 1994, STUD SURF SCI CATAL, V87, P151