Transconductance quantization in a topological Josephson tunnel junction circuit

被引:25
作者
Peyruchat, L. [1 ]
Griesmar, J. [1 ,3 ,4 ]
Pillet, J-D [1 ,2 ]
Girit, C. O. [1 ]
机构
[1] PSL Univ, Coll France, Flux Quantum Lab, JEIP,USR CNRS 3573, 11 Pl Marcelin Berthelot, F-75231 Paris 05, France
[2] Inst Polytech Paris, CNRS, Ecole Polytech, LSI,CEA DRF IRAMIS, F-91128 Palaiseau, France
[3] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ, Canada
[4] Univ Sherbrooke, Dept GEGI, Sherbrooke, PQ, Canada
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
基金
欧洲研究理事会;
关键词
QUANTUM; STATE;
D O I
10.1103/PhysRevResearch.3.013289
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconducting circuits incorporating Josephson tunnel junctions are widely used for fundamental research as well as for applications in fields such as quantum information and magnetometry. The quantum coherent nature of Josephson junctions makes them especially suitable for metrology applications. Josephson junctions suffice to form two sides of the quantum metrology triangle, relating frequency to either voltage or current, but not its base, which directly links voltage to current. We propose a five Josephson tunnel junction circuit in which simultaneous pumping of flux and charge results in quantized transconductance in units 4e(2)/h = 2e/Phi(0), the ratio between the Cooper pair charge and the flux quantum. The Josephson quantized Hall conductance device (JHD) is explained in terms of intertwined Cooper pair pumps driven by the AC Josephson effect. We describe an experimental implementation of the device and discuss the optimal configuration of external parameters and possible sources of error. The JHD has a rich topological structure and demonstrates that Josephson tunnel junctions are universal, capable of interrelating frequency, voltage, and current via fundamental constants.
引用
收藏
页数:10
相关论文
共 51 条
[1]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.4048048
[2]   Connecting Berry's phase and the pumped charge in a Cooper pair pump [J].
Aunola, M ;
Toppari, JJ .
PHYSICAL REVIEW B, 2003, 68 (02)
[3]   Practical Quantum Realization of the Ampere from the Elementary Charge [J].
Brun-Picard, J. ;
Djordjevic, S. ;
Leprat, D. ;
Schopfer, F. ;
Poirier, W. .
PHYSICAL REVIEW X, 2016, 6 (04)
[4]   Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics [J].
Buchner, M. ;
Hoefler, K. ;
Henne, B. ;
Ney, V. ;
Ney, A. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (16)
[5]   Supercurrent Flow in Multiterminal Graphene Josephson Junctions [J].
Draelos, Anne W. ;
Wei, Ming-Tso ;
Seredinski, Andrew ;
Li, Hengming ;
Mehta, Yash ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Borzenets, Ivan V. ;
Amet, Francois ;
Finkelstein, Gleb .
NANO LETTERS, 2019, 19 (02) :1039-1043
[6]   Fast and accurate Cooper pair pump [J].
Erdman, Paolo A. ;
Taddei, Fabio ;
Peltonen, Joonas T. ;
Fazio, Rosario ;
Pekola, Jukka P. .
PHYSICAL REVIEW B, 2019, 100 (23)
[7]   Topological transconductance quantization in a four-terminal Josephson junction [J].
Eriksson, Erik ;
Riwar, Roman-Pascal ;
Houzet, Manuel ;
Meyer, Julia S. ;
Nazarov, Yuli V. .
PHYSICAL REVIEW B, 2017, 95 (07)
[8]  
Fatemi V., 2021, PHYS REV RES, V3
[9]   Superconducting tetrahedral quantum bits [J].
Feigel'man, MV ;
Ioffe, LB ;
Geshkenbein, VB ;
Dayal, P ;
Blatter, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :098301-1
[10]   SINGLE COOPER PAIR PUMP [J].
GEERLIGS, LJ ;
VERBRUGH, SM ;
HADLEY, P ;
MOOIJ, JE ;
POTHIER, H ;
LAFARGE, P ;
URBINA, C ;
ESTEVE, D ;
DEVORET, MH .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 85 (03) :349-355