Functionality of Non-Fullerene Electron Acceptors in Ternary Organic Solar Cells

被引:34
作者
Zhu, Tao [1 ]
Zheng, Luyao [1 ]
Xiao, Zuo [2 ]
Meng, Xianyi [2 ]
Liu, Lei [1 ]
Ding, Liming [2 ]
Gong, Xiong [1 ]
机构
[1] Univ Akron, Dept Polymer Engn, Coll Polymer Sci & Polymer Engn, Akron, OH 44325 USA
[2] Chinese Acad Sci, Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
关键词
enhanced device performances; non-fullerene electron acceptors; organic solar cells; ternary organic solar cells; transient photocurrent; POLYMER; BLEND; EFFICIENCY; RECOMBINATION; PHOTOVOLTAICS; SENSITIZATION; MORPHOLOGY; MOBILITY; LOSSES;
D O I
10.1002/solr.201900322
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ternary organic solar cells, a single active layer comprising three different components, are demonstrated to be one of the most efficient ways to approach high-performance organic solar cells. But nevertheless, most of the ternary organic solar cells are characterized by steady-state measurements, which are helpful but inadequate to fully understand the underlying charge carrier behavior at a short time scale. Herein, a comparison of the steady-state and time-dependent measurements is used to investigate the functionality of non-fullerene electron acceptors in ternary organic solar cells. The steady-state measurements indicate that non-fullerene electron acceptors enlarge the absorption range of the photoactive layer, suppress charge carrier recombination, reduce charge carrier transfer resistance, and thereby increase photocurrent in ternary organic solar cells. The time-dependent measurements demonstrate that a short charge carrier extraction time and a high charge carrier mobility are responsible for enhanced photocurrent in ternary organic solar cells. A comprehensive method understanding the underlying of enhanced efficiency of ternary organic solar cells is provided herein.
引用
收藏
页数:8
相关论文
共 74 条
[1]   Organic Ternary Solar Cells: A Review [J].
Ameri, Tayebeh ;
Khoram, Parisa ;
Min, Jie ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2013, 25 (31) :4245-4266
[2]   Enhanced performance of polymer solar cells by employing a ternary cascade energy structure [J].
An, Qiaoshi ;
Zhang, Fujun ;
Li, Lingliang ;
Zhuo, Zuliang ;
Zhang, Jian ;
Tang, Weihua ;
Teng, Feng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (30) :16103-16109
[3]  
Baran D, 2017, NAT MATER, V16, P363, DOI [10.1038/NMAT4797, 10.1038/nmat4797]
[4]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[5]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[6]   Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells [J].
Cowan, Sarah R. ;
Banerji, Natalie ;
Leong, Wei Lin ;
Heeger, Alan J. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (06) :1116-1128
[7]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[8]   Enhanced spectral coverage in tandem organic solar cells [J].
Dennler, Gilles ;
Prall, Hans-Jurgen ;
Koeppe, Robert ;
Egginger, Martin ;
Autengruber, Robert ;
Sariciftci, Niyazi Serdar .
APPLIED PHYSICS LETTERS, 2006, 89 (07)
[9]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
[10]   Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance [J].
Ebenhoch, Bernd ;
Thomson, Stuart A. J. ;
Genevicius, Kristijonas ;
Juska, Gytis ;
Samuel, Ifor D. W. .
ORGANIC ELECTRONICS, 2015, 22 :62-68