Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice

被引:55
作者
Ren, ZhengXue [1 ]
Zhang, ShuangQuan [1 ]
Zhao, PengWei [1 ]
Itagaki, Naoyuki [2 ]
Maruhn, Joachim A. [3 ]
Meng, Jie [1 ,2 ,4 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[3] Goethe Univ, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
[4] Univ Stellenbosch, Dept Phys, ZA-7600 Stellenbosch, South Africa
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
covariant density functional theory; cranking model; 3D lattice space; linear chain structure; alpha-cluster structure; collective rotation; C-12; HARTREE-BOGOLIUBOV THEORY; EXCITED-STATES; CLUSTER STRUCTURE; BANDS; NUCLEI; O-16; SEARCH;
D O I
10.1007/s11433-019-9412-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stability of the linear chain structure of three ff clusters for 12C against the bending and fi ssion is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three ff initial con fi guration, it is found that the linear chain structure is stable when the rotational frequency is within the range of 2.0- 2.5 MeV. Beyond this range, the fi nal states are not stable against fi ssion. By examining the density distributions and the occupation of single-particle levels, however, these fi ssions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency 3.5 MeV, but the fi ssion still occurs when the rotational frequency approaches 4.0 MeV.
引用
收藏
页数:8
相关论文
共 84 条
[1]   Termination of rotational bands: Disappearance of quantum many-body collectivity [J].
Afanasjev, AV ;
Fossan, DB ;
Lane, GJ ;
Ragnarsson, I .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 322 (1-2) :1-124
[2]  
[Anonymous], 2011, Spectral Methods, DOI [DOI 10.1007/978, DOI 10.1007/978-3-540-71041-7, 10.1007/978-3-540-71041-7]
[3]   Three-body decay of linear-chain states in 14C [J].
Baba, T. ;
Kimura, M. .
PHYSICAL REVIEW C, 2017, 95 (06)
[4]   3α clustering in excited states of 16C [J].
Baba, T. ;
Chiba, Y. ;
Kimura, M. .
PHYSICAL REVIEW C, 2014, 90 (06)
[5]   Beyond mean-field description of the low-lying spectrum of 16O [J].
Bender, M ;
Heenen, PH .
NUCLEAR PHYSICS A, 2003, 713 (3-4) :390-401
[6]  
Bohr A., 1975, Nuclear structure, VII
[7]   Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model -: art. no. 044308 [J].
Bürvenich, T ;
Madland, DG ;
Maruhn, JA ;
Reinhard, PG .
PHYSICAL REVIEW C, 2002, 65 (04) :443081-4430823
[8]   BREAKUP OF O16 INTO BE8+BE8 [J].
CHEVALLIER, P ;
SCHEIBLING, F ;
GOLDRING, G ;
PLESSER, I ;
SACHS, MW .
PHYSICAL REVIEW, 1967, 160 (04) :827-+
[9]   APPLICATION OF THE IMAGINARY TIME STEP METHOD TO THE SOLUTION OF THE STATIC HARTREE-FOCK PROBLEM [J].
DAVIES, KTR ;
FLOCARD, H ;
KRIEGER, S ;
WEISS, MS .
NUCLEAR PHYSICS A, 1980, 342 (01) :111-123
[10]   Density functional theory studies of cluster states in nuclei [J].
Ebran, J. -P. ;
Khan, E. ;
Niksic, T. ;
Vretenar, D. .
PHYSICAL REVIEW C, 2014, 90 (05)