Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model

被引:10
作者
Ali, Muhammad Umair [1 ]
Kallu, Karam Dad [2 ]
Masood, Haris [3 ]
Niazi, Kamran Ali Khan [4 ]
Alvi, Muhammad Junaid [5 ]
Ghafoor, Usman [6 ]
Zafar, Amad [7 ,8 ]
机构
[1] Sejong Univ, Dept Unmanned Vehicle Engn, Seoul 05006, South Korea
[2] Natl Univ Sci & Technol NUST, Sch Mech & Mfg Engn SMME, Dept Robot & Intelligent Machine Engn RIME, H-12, Islamabad 44000, Pakistan
[3] Univ Wah, Dept Elect Engn, Wah Cantt 47040, Pakistan
[4] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
[5] NFC Inst Engn & Fertilizer Res, Dept Elect Engn, Faisalabad 38090, Pakistan
[6] Inst Space Technol, Dept Mech Engn, Islamabad 44000, Pakistan
[7] Univ Lahore, Dept Elect Engn, Islamabad Campus, Islamabad 44000, Pakistan
[8] Ibadat Int Univ, Dept Elect Engn, Islamabad 44000, Pakistan
关键词
GAUSSIAN PROCESS REGRESSION; USEFUL LIFE PREDICTION; ION; STATE;
D O I
10.1016/j.isci.2021.103286
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A data-driven approach is developed to predict the future capacity of lithium-ion batteries (LIBs) in this work. The empirical mode decomposition (EMD), kernel recursive least square tracker (KRLST), and long short-term memory (LSTM) are used to derive the proposed approach. First, the LIB capacity data is split into local regeneration and monotonic global degradation using the EMD approach. Next, the KRLST is used to track the decomposed intrinsic mode functions, and the residual signal is predicted using the LSTM sub-model. Finally, all the predicted intrinsic mode functions and the residual are ensembled to get the future capacity. The experimental and comparative analysis validates the high accuracy (RIVSE of 0.00103) of the proposed ensemble approach compared to Gaussian process regression and LSTM fused model. Further nore, two times lesser error than other fused models makes this approach an efficient tool for battery health prognostics.
引用
收藏
页数:17
相关论文
共 35 条
[1]   Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images [J].
Ahmed, Waqas ;
Hanif, Aamir ;
Kallu, Karam Dad ;
Kouzani, Abbas Z. ;
Ali, Muhammad Umair ;
Zafar, Amad .
SENSORS, 2021, 21 (16)
[2]   Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Park, Gwan-Soo ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (22)
[3]   Effect of Sensors Sensitivity on Lithium-Ion Battery Modeled Parameters and State of Charge: A Comparative Study [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Kim, Hee-Je .
ELECTRONICS, 2019, 8 (06)
[4]   Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Alvi, Muhammad Junaid ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (03)
[5]   A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control [J].
Ali, Muhammad Umair ;
Nengroo, Sarvar Hussain ;
Khan, Muhamad Adil ;
Zeb, Kamran ;
Kamran, Muhammad Ahmad ;
Kim, Hee-Je .
ENERGIES, 2018, 11 (05)
[6]  
[Anonymous], 2008, 62nd meeting of the society for machinery failure prevention technology (mfpt), Virginia Beach, Virginia
[7]   Estimation of continuous and constraint-free 3 DoF wrist movements from surface electromyogram signal using kernel recursive least square tracker [J].
Bakshi, Koushik ;
Manjunatha, M. ;
Kumar, C. S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 46 :104-115
[8]   An accelerated calendar and cycle life study of Li-ion cells [J].
Bloom, I ;
Cole, BW ;
Sohn, JJ ;
Jones, SA ;
Polzin, EG ;
Battaglia, VS ;
Henriksen, GL ;
Motloch, C ;
Richardson, R ;
Unkelhaeuser, T ;
Ingersoll, D ;
Case, HL .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :238-247
[9]   Beyond Technology: Demand-Side Solutions for Climate Change Mitigation [J].
Creutzig, Felix ;
Fernandez, Blanca ;
Haberl, Helmut ;
Khosla, Radhika ;
Mulugetta, Yacob ;
Seto, Karen C. .
ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 41, 2016, 41 :173-198
[10]   On Lead-Acid-Battery Resistance and Cranking-Capability Estimation [J].
Cugnet, Mikael ;
Sabatier, Jocelyn ;
Laruelle, Stephane ;
Grugeon, Sylvie ;
Sahut, Bernard ;
Oustaloup, Alain ;
Tarascon, Jean-Marie .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (03) :909-917