Molecular Engineering of an Alkaline Naphthoquinone Flow Battery

被引:110
作者
Topg, Liuchuan [1 ]
Goulet, Marc-Antoni [2 ,3 ]
Tabor, Daniel P. [1 ]
Kerr, Emily F. [1 ]
De Porcellinis, Diana [2 ]
Fell, Eric M. [2 ]
Aspuru-Guzik, Alan [1 ,4 ,5 ]
Gordon, Roy G. [1 ]
Aziz, Michael J. [2 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
[3] Form Energy Inc, Somerville, MA 02143 USA
[4] Univ Toronto, Dept Chem, Vector Inst Artificial Intelligence, Toronto, ON M5S 1A1, Canada
[5] Univ Toronto, Dept Comp Sci, Vector Inst Artificial Intelligence, Toronto, ON M5S 1A1, Canada
关键词
ELECTRICAL ENERGY-STORAGE; ANOLYTE; OXIDATION;
D O I
10.1021/acsenergylett.9b01321
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous organic redox flow batteries (AORFBs) have recently gained significant attention as a potential candidate for grid-scale electrical energy storage. Successful implementation of this technology will require redox-active organic molecules with many desired properties. Here we introduce a naphthoquinone dimer, bislawsone, as the redox-active material in a negative potential electrolyte (negolyte) for an AORFB. This dimerization strategy substantially improves the performance of the electrolyte versus that of the lawsone monomer in terms of solubility, stability, reversible capacity, permeability, and cell voltage. An AORFB pairing bislawsone with a ferri/ferrocyanide positive electrolyte delivers an open-circuit voltage of 1.05 V and cycles at a current density of 300 mA/cm(2) with a negolyte concentration of 2 M electrons in alkaline solution. We determined the degradation mechanism for the naphthoquinone-based electrolyte using chemical analysis and predicted theoretically electrolytes based on naphthoquinones that will be even more stable.
引用
收藏
页码:1880 / 1887
页数:15
相关论文
共 33 条
[1]   Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators [J].
Badalyan, Artavazd ;
Stahl, Shannon S. .
NATURE, 2016, 535 (7612) :406-410
[2]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[3]  
Bruce D. B, 1952, J CHEM SOC, V2759
[4]   A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries [J].
Cao, Jianyu ;
Tao, Meng ;
Chen, Hongping ;
Xu, Juan ;
Chen, Zhidong .
JOURNAL OF POWER SOURCES, 2018, 386 :40-46
[5]   Transition metal complexes as electrocatalysts - Development and applications in electro-oxidation reactions [J].
Cheung, Kwong-Chak ;
Wong, Wing-Leung ;
Ma, Dik-Lung ;
Lai, Tat-Shing ;
Wong, Kwok-Yin .
COORDINATION CHEMISTRY REVIEWS, 2007, 251 (17-20) :2367-2385
[6]   Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Liu, Xuan ;
Luo, Jian ;
Sun, Yujie ;
Liu, T. Leo .
CHEM, 2017, 3 (06) :961-978
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]  
Dweck A C, 2002, Int J Cosmet Sci, V24, P287, DOI 10.1046/j.1467-2494.2002.00148.x
[9]   Redox catalysis in organic electrosynthesis: basic principles and recent developments [J].
Francke, Robert ;
Little, R. Daniel .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (08) :2492-2521
[10]   Anthraquinone Derivatives in Aqueous Flow Batteries [J].
Gerhardt, Michael R. ;
Tong, Liuchuan ;
Gomez-Bombarelli, Rafael ;
Chen, Qing ;
Marshak, Michael P. ;
Galvin, Cooper J. ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
ADVANCED ENERGY MATERIALS, 2017, 7 (08)