Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate

被引:489
作者
Yang, Yi [1 ]
Lu, Xinglin [1 ]
Jiang, Jin [1 ]
Ma, Jun [1 ]
Liu, Guanqi [1 ]
Cao, Ying [1 ]
Liu, Weili [1 ]
Li, Juan [1 ]
Pang, Suyan [2 ]
Kong, Xiujuan [1 ]
Luo, Congwei [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Harbin Univ Sci & Technol, Coll Chem & Environm Engn, Key Lab Green Chem Engn & Technol Coll Heilongjia, Harbin 150040, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfamethoxazole; Hydroxyl radical; Sulfate radical; Carbonate radical; Transformation products; SYNTHETIC HUMAN URINE; WASTE-WATER; AQUEOUS-SOLUTION; DRINKING-WATER; RATE CONSTANTS; TRANSFORMATION PRODUCTS; AQUATIC ENVIRONMENT; SINGLET OXYGEN; LAKE GENEVA; PHARMACEUTICALS;
D O I
10.1016/j.watres.2017.03.054
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological, effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H2O2 and UV/PDS processes. Because of the electrophilic nature of SO4 center dot-, the second-order rate constant for the reaction of sulfate radical (SO4 center dot-) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (center dot OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the N-S bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of center dot OH with SMX. SO4 center dot- favored attack on -NH2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H2O2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H2O2 vs. UV/PDS suggested that carbonate radical (CO3 center dot-) oxidized SMX through the electron transfer mechanism similar to SO4 center dot- but with less oxidation capacity. Additionally, SO4 center dot- and CO3 center dot- exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using Vibrio fischeri, and these results indicated that the oxidation of SO4 center dot- or CO3 center dot- with SMX generated more toxic products than those of (OH)-O-center dot. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 50 条
  • [1] Comparative study on degradation of propranolol and formation of oxidation products by UV/H2O2 and UV/persulfate (PDS)
    Yang, Yi
    Cao, Ying
    Jiang, Jin
    Lu, Xinglin
    Ma, Jun
    Pang, Suyan
    Li, Juan
    Liu, Yongze
    Zhou, Yang
    Guan, Chaoting
    WATER RESEARCH, 2019, 149 : 543 - 552
  • [2] Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study
    Chen, Liwei
    Cai, Tianming
    Cheng, Chuan
    Xiong, Zhuang
    Ding, Dahu
    CHEMICAL ENGINEERING JOURNAL, 2018, 351 : 1137 - 1146
  • [3] Comparison of UV/PDS and UV/H2O2 processes for the degradation of atenolol in water
    Liu, Xiaowei
    Fang, Lei
    Zhou, Yongchao
    Zhang, Tuqiao
    Shao, Yu
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2013, 25 (08) : 1519 - 1528
  • [4] Degradation of benzophenone-8 in UV/oxidation processes: Comparison of UV/H2O2, UV/persulfate, UV/chlorine processes
    Lee, Young-Min
    Lee, Gowoon
    Kim, Taeyeon
    Zoh, Kyung-Duk
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (01):
  • [5] UV/H2O2 and UV/PDS treatment of an emerging cyanotoxin (aerucyclamide A): Kinetics, transformation products, and toxicity
    Sha, Haitao
    Su, Xuanyi
    Zhou, Pin
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [6] Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS
    Zhang, Ruochun
    Yang, Yongkui
    Huang, Ching-Hua
    Zhao, Lin
    Sun, Peizhe
    WATER RESEARCH, 2016, 103 : 283 - 292
  • [7] Degradation of Sulfamethoxazole Using UV and UV/H2O2 Processes
    Borowska, Ewa
    Felis, Ewa
    Miksch, Korneliusz
    JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2015, 18 (01) : 69 - 77
  • [8] Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate
    Zhang, Yiqing
    Zhang, Jiefeng
    Xiao, Yongjun
    Chang, Victor W. C.
    Lim, Teik-Thye
    CHEMICAL ENGINEERING JOURNAL, 2016, 302 : 526 - 534
  • [9] Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes
    Xiao, Yongjun
    Zhang, Lifeng
    Zhang, Wei
    Lim, Kok-Yong
    Webster, Richard D.
    Lim, Teik-Thye
    WATER RESEARCH, 2016, 102 : 629 - 639
  • [10] Removal of trace organic chemicals in wastewater effluent by UV/H2O2 and UV/PDS
    Nihemaiti, Maolida
    Miklos, David B.
    Huebner, Uwe
    Linden, Karl G.
    Drewes, Joerg E.
    Croue, Jean-Philippe
    WATER RESEARCH, 2018, 145 : 487 - 497