Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1 - x high-entropy alloys

被引:56
作者
Li, Cheng [1 ]
Xue, Yunfei [1 ,2 ]
Hua, Mutian [1 ]
Cao, Tangqing [1 ]
Ma, Lili [1 ,3 ]
Wang, Lu [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
[3] Qinghai Univ, Sch Chem Engn, Xining 810016, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloys; Spinodal decomposition; Microstructure; Strain rate; Mechanical properties; SOLID-SOLUTION; BEHAVIOR; ELEMENTS; SYSTEM; HEAT; NB; TI;
D O I
10.1016/j.matdes.2015.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AlxSi0.2CrFeCoNiCu1 (- x) (x = 0.2, 0.4, 0.5, 0.6, 0.8, 0.9) high-entropy alloys (HEAs) were prepared using vacuum arc melting and injection casting. The microstructures, detailed phases, and strain rate-related mechanical properties of the alloys were investigated. The alloys changed gradually from FCC to coexisting FCC and BCC and then to a BCC solid solution with an increase in the Al content and a decrease in the Cu content. With the Al content increase, the alloys with FCC structures exhibited an increased yield stress but a decreased plasticity. However, the alloys with the BCC structure exhibited both increased strength and plasticity. The improved mechanical properties of alloys are attributed to the combined action of solid-solution strengthening, a decrease in compositional segregation, and fine-grain strengthening. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:601 / 609
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[2]  
[Anonymous], 1964, The mechanical properties of matter
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy [J].
Chen, Weiping ;
Fu, Zhiqiang ;
Fang, Sicong ;
Xiao, Huaqiang ;
Zhu, Dezhi .
MATERIALS & DESIGN, 2013, 51 :854-860
[5]   Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel [J].
Chen, YY ;
Duval, T ;
Hung, UD ;
Yeh, JW ;
Shih, HC .
CORROSION SCIENCE, 2005, 47 (09) :2257-2279
[6]   Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤2) high-entropy alloys [J].
Chou, Hsuan-Ping ;
Chang, Yee-Shyi ;
Chen, Swe-Kai ;
Yeh, Jien-Wei .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 163 (03) :184-189
[7]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[8]   Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy [J].
Dong, Yong ;
Zhou, Kaiyao ;
Lu, Yiping ;
Gao, Xiaoxia ;
Wang, Tongmin ;
Li, Tingju .
MATERIALS & DESIGN, 2014, 57 :67-72
[9]   Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys [J].
Fan, Q. C. ;
Li, B. S. ;
Zhang, Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 614 :203-210
[10]   The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites [J].
Fan, Q. C. ;
Li, B. S. ;
Zhang, Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 598 :244-250