The floodlight problem

被引:20
作者
Bose, P
Guibas, L
Lubiw, A
Overmars, M
Souvaine, D
Urrutia, J
机构
[1] MCGILL UNIV,DEPT COMP SCI,MONTREAL,PQ H3A 2A7,CANADA
[2] STANFORD UNIV,DEPT COMP SCI,PALO ALTO,CA 94305
[3] UNIV WATERLOO,DEPT COMP SCI,WATERLOO,ON N2L 3G1,CANADA
[4] UNIV UTRECHT,DEPT COMP SCI,NL-3508 TB UTRECHT,NETHERLANDS
[5] RUTGERS STATE UNIV,DEPT COMP SCI,NEW BRUNSWICK,NJ 08903
[6] UNIV OTTAWA,DEPT COMP SCI,OTTAWA,ON K1N 5N5,CANADA
关键词
illumination problems; dissecting point sets;
D O I
10.1142/S0218195997000090
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given three angles summing to 2 pi, given n points in the plane and a tripartition k(1) + k(2) + k(3) = n, we can tripartition the plane into three wedges of the given angles 80 that the i-th wedge contains k(i) of the points. This new result on dissecting point sets is used to prove that lights of specified angles not exceeding pi can be placed at n fixed points in the plane to illuminate the entire plans if and only if the angles sum to st least 2 pi. We give O(n log n) algorithms for both these problems.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1987, ART GALLERY THEOREMS
[2]  
BLUM M, 1972, J COMPUT SYST SCI, V7, P448
[3]   ILLUMINATING RECTANGLES AND TRIANGLES IN THE PLANE [J].
CZYZOWICZ, J ;
RIVERACAMPO, E ;
URRUTIA, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (01) :1-17
[4]  
CZYZOWICZ J, 1993, P 5 CAN C COMP GEOM, P393
[5]  
CZYZOWICZ J, 1989, LECT NOTES COMPUTER, V382
[6]  
Edelsbrunner H., 1987, ALGORITHMS COMBINATO
[7]  
PACH J, 1992, COMMUNICATION
[8]  
Preparata F., 2012, Computational geometry: an introduction
[9]  
ROTE G, 1993, COMMUNICATION
[10]   RECENT RESULTS IN ART GALLERIES [J].
SHERMER, TC .
PROCEEDINGS OF THE IEEE, 1992, 80 (09) :1384-1399