Predicting COVID-19 Based on Environmental Factors With Machine Learning

被引:18
|
作者
Abdulkareem, Amjed Basil [1 ]
Sani, Nor Samsiah [1 ]
Sahran, Shahnorbanun [1 ]
Alyessari, Zaid Abdi Alkareem [1 ]
Adam, Afzan [1 ]
Abd Rahman, Abdul Hadi [1 ]
Abdulkarem, Abdulkarem Basil [2 ]
机构
[1] Natl Univ Malaysia UKM, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Bangi, Selangor, Malaysia
[2] Al Maarif Univ Coll, Ramadi, Iraq
来源
INTELLIGENT AUTOMATION AND SOFT COMPUTING | 2021年 / 28卷 / 02期
关键词
Machine learning; deep learning; classification; COVID-19; CNN; Naive Bayes; ADtree; B40;
D O I
10.32604/iasc.2021.015413
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The coronavirus disease 2019 (COVID-19) has infected more than 50 million people in more than 100 countries, resulting in a major global impact. Many studies on the potential roles of environmental factors in the transmission of the novel COVID-19 have been published. However, the impact of environmental factors on COVID-19 remains controversial. Machine learning techniques have been used effectively in combating the COVID-19 epidemic. However, researches related to machine learning on weather conditions in spreading COVID-19 is generally lacking. Therefore, in this study, three machine learning models (Convolution Neural Network (CNN), ADtree Classifier and BayesNet) based on the confirmed cases and weather variables such as temperature, humidity, wind and precipitation are developed. This study aims to identify the best classification model to classify COVID-19 by using significant weather features chosen by Principle Component Analysis (PCA) feature selection method. The DS4C COVID-19 data set is used to train and validate each machine learning model. Several data preprocessing tasks such as data cleaning and feature selection have been conducted on the raw dataset to ensure the quality of the training data. The performance of these machine learning algorithms is further rectified based on the selected features set by PCA. Each classifier is then optimized using different tuning parameters to achieve optimum values before comparing the output of the three classifiers against each other. The observational results have shown that the optimized CNN classifier with seven weather variables selected by PCA achieved the highest performance among all the techniques. The experimental results obtained show that the weather variables are more relevant in predicting the confirmed cases as compared to the other variables. Thus, from this result, it is evident that temperature, humidity, wind and precipitation are important features for predicting COVID-19 confirmed cases.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 50 条
  • [1] Machine learning predicting COVID-19 in Algeria
    Younsi, Fatima Zohra
    Sahinine, Mohammed Chems Eddine
    Benarroum, Ilyes
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2024, 24 (01) : 61 - 84
  • [2] Machine learning algorithms for predicting COVID-19 mortality in Ethiopia
    Alie, Melsew Setegn
    Negesse, Yilkal
    Kindie, Kassa
    Merawi, Dereje Senay
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [3] Comparing machine learning algorithms for predicting COVID-19 mortality
    Khadijeh Moulaei
    Mostafa Shanbehzadeh
    Zahra Mohammadi-Taghiabad
    Hadi Kazemi-Arpanahi
    BMC Medical Informatics and Decision Making, 22
  • [4] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [5] A machine learning model for predicting deterioration of COVID-19 inpatients
    Noy, Omer
    Coster, Dan
    Metzger, Maya
    Atar, Itai
    Shenhar-Tsarfaty, Shani
    Berliner, Shlomo
    Rahav, Galia
    Rogowski, Ori
    Shamir, Ron
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Comparing machine learning algorithms for predicting COVID-19 mortality
    Moulaei, Khadijeh
    Shanbehzadeh, Mostafa
    Mohammadi-Taghiabad, Zahra
    Kazemi-Arpanahi, Hadi
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [7] A machine learning model for predicting deterioration of COVID-19 inpatients
    Omer Noy
    Dan Coster
    Maya Metzger
    Itai Atar
    Shani Shenhar-Tsarfaty
    Shlomo Berliner
    Galia Rahav
    Ori Rogowski
    Ron Shamir
    Scientific Reports, 12
  • [8] A comparison of machine learning algorithms in predicting COVID-19 prognostics
    Ustebay, Serpil
    Sarmis, Abdurrahman
    Kaya, Gulsum Kubra
    Sujan, Mark
    INTERNAL AND EMERGENCY MEDICINE, 2023, 18 (01) : 229 - 239
  • [9] Machine Learning Algorithms for Predicting the Spread of Covid-19 in Indonesia
    Arlis, Syafri
    Defit, Sarjon
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2021, 10 (02): : 970 - 974
  • [10] A comparison of machine learning algorithms in predicting COVID-19 prognostics
    Serpil Ustebay
    Abdurrahman Sarmis
    Gulsum Kubra Kaya
    Mark Sujan
    Internal and Emergency Medicine, 2023, 18 : 229 - 239