An insight into the heat-management for the CO2 methanation based on free convection

被引:12
|
作者
Alarcon, Andreina [1 ,2 ]
Guilera, Jordi [1 ]
Andreu, Teresa [1 ]
机构
[1] Catalonia Inst Energy Res IREC, Jardins Dones Negre 1, Sant Adria De Besos 08930, Spain
[2] Escuela Super Politecn Litoral, ESPOL, Fac Ingn Ciencias Tierra, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador
关键词
CO2; methanation; Synthetic natural gas; Reactor design; Heat-management; Computational fluid dynamics; POWER-TO-GAS; FIXED-BED REACTOR; CARBON-DIOXIDE; NATURAL-GAS; TEMPERATURE; MICRO; CATALYSTS; HYDROGENATION; OPTIMIZATION; NI/AL2O3;
D O I
10.1016/j.fuproc.2020.106666
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This article presents a novel heat-management approach for CO2 valorization to synthetic natural gas based on free convection to the environment, without requirements of heat-exchange services. With this aim, a reactor channel was built (d = 4.6 mm, L = 250 mm) and tested at different conditions of inlet temperatures, gas hourly space velocities and pressures using an active nickel/ceria-based catalyst. After experimentation, a CFD model was developed, validated and employed for an efficient sensitive analysis of the most suitable reaction conditions. The simulation criteria were obtaining high CO2 conversion level and restricting overheating to avoid catalyst and reactor degradation. Then, the optimal conditions found by CFD modelling were successfully validated at lab-scale. The CO2 conversion level experimentally obtained was 93%, by using a decreasing temperature profile in the range of 830-495 K, operating at a pressure of 5 atm and a gas hourly space velocity of 11,520 h(-1). The proposed reactor configuration guarantees an efficient heat management along the reactor channel by using feasible conditions of pressure, temperature and flowrate for its implementation in small-scale applications, where the use of the exothermic heat is less profitable.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Difference in the selectivity of CO and CO2 methanation reactions
    Fujita, SI
    Takezawa, N
    CHEMICAL ENGINEERING JOURNAL, 1997, 68 (01): : 63 - 68
  • [22] Convection Heat Transfer of CO2 at Supercritical Pressures in Microtubes
    Yang, Feng-Ye
    Wang, Ke
    Liu, Tong
    Wang, Yong-qing
    Liu, Zun-chao
    CHEMICAL ENGINEERING & TECHNOLOGY, 2013, 36 (12) : 2051 - 2056
  • [23] MECHANISMS OF METHANATION OF CO AND CO2 OVER NI
    FUJITA, S
    TERUNUMA, H
    NAKAMURA, M
    TAKEZAWA, N
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1991, 30 (06) : 1146 - 1151
  • [24] HEAT-TRANSFER IN THE LAMINAR FREE CONVECTION OF CO2 AT SUPERCRITICAL PRESSURE UNDER COOLING CONDITIONS
    BESCHASTNOV, SP
    KULKOV, SM
    PETROV, VP
    HIGH TEMPERATURE, 1978, 16 (03) : 561 - 564
  • [25] Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review
    Tsiotsias, Anastasios I.
    Charisiou, Nikolaos D.
    Yentekakis, Ioannis V.
    Goula, Maria A.
    NANOMATERIALS, 2021, 11 (01) : 1 - 34
  • [26] PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle
    Li, Hongzhi
    Zhang, Yifan
    Zhang, Lixin
    Yao, Mingyu
    Kruizenga, Alan
    Anderson, Mark
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 98 : 204 - 218
  • [27] Role of oxide support in Ni based catalysts for CO2 methanation
    Lee, Ye Hwan
    Ahn, Jeong Yoon
    Dinh Duc Nguyen
    Chang, Soon Woong
    Kim, Sung Su
    Lee, Sang Moon
    RSC ADVANCES, 2021, 11 (29) : 17648 - 17657
  • [28] Slag-based geopolymer microspheres as a support for CO2 methanation
    Wan, Hengyu
    He, Yan
    Su, Qiaoqiao
    Liu, Leping
    Cui, Xuemin
    FUEL, 2022, 319
  • [29] Mechanochemical CO2 methanation over LaNi-based alloys
    Yatagai, Kohei
    Shishido, Yuto
    Gemma, Ryota
    Boll, Torben
    Uchida, Haru-Hisa
    Oguri, Kazuya
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (08) : 5264 - 5275
  • [30] Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst
    Beuls, Antoine
    Swalus, Colas
    Jacquemin, Marc
    Heyen, George
    Karelovic, Alejandro
    Ruiz, Patricio
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 113 : 2 - 10