In applied sciences, generalized linear mixed models have become one of the preferred tools to analyze a variety of longitudinal and Clustered data. Due to software limitations, the analyses are often restricted to the setting in which the random effects terms follow a multivariate normal distribution. However, this assumption may be unrealistic, obscuring important features of among-unit variation. This work describes a widely applicable semiparametric Bayesian approach that relaxes the normality assumption by using a novel mixture of multivariate Polya trees prior to define a flexible nonparametric model for the random effects distribution. The nonparametric prior is centered on the commonly used parametric normal family. We allow this parametric family to hold only approximately, thereby providing a robust alternative for modeling. We discuss and implement practical procedures For addressing the computational challenges that arise under this approach. We illustrate the methodology by applying it to real-life examples. Supplemental materials for this paper are available online.
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
Donohue, M. C.
Overholser, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
Overholser, R.
Xu, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
Xu, R.
Vaida, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, Nian-Sheng
Duan, Xing-De
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
Donohue, M. C.
Overholser, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
Overholser, R.
Xu, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
Xu, R.
Vaida, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, San Diego, CA 92093 USA
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, Nian-Sheng
Duan, Xing-De
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China