Robustifying Generalized Linear Mixed Models Using a New Class of Mixtures of Multivariate Polya Trees

被引:24
|
作者
Jara, Alejandro [1 ]
Hanson, Timothy E. [2 ]
Lesaffre, Emmanuel [3 ,4 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Stat, Concepcion, Chile
[2] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[3] Catholic Univ Louvain, Ctr Biostat, B-3000 Louvain, Belgium
[4] Erasmus MC, Dept Biostat, NL-3000 CA Rotterdam, Netherlands
关键词
Bayesian nonparametric; Orthogonal matrix; SEMIPARAMETRIC BAYESIAN-APPROACH; POSTERIOR DISTRIBUTIONS; NONPARAMETRIC PROBLEMS; COUNT DATA; INFERENCE;
D O I
10.1198/jcgs.2009.07062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In applied sciences, generalized linear mixed models have become one of the preferred tools to analyze a variety of longitudinal and Clustered data. Due to software limitations, the analyses are often restricted to the setting in which the random effects terms follow a multivariate normal distribution. However, this assumption may be unrealistic, obscuring important features of among-unit variation. This work describes a widely applicable semiparametric Bayesian approach that relaxes the normality assumption by using a novel mixture of multivariate Polya trees prior to define a flexible nonparametric model for the random effects distribution. The nonparametric prior is centered on the commonly used parametric normal family. We allow this parametric family to hold only approximately, thereby providing a robust alternative for modeling. We discuss and implement practical procedures For addressing the computational challenges that arise under this approach. We illustrate the methodology by applying it to real-life examples. Supplemental materials for this paper are available online.
引用
收藏
页码:838 / 860
页数:23
相关论文
共 50 条
  • [1] Multivariate mixtures of Polya trees for modelling ROC data
    Hanson, Timothy E.
    Branscum, Adam J.
    Gardner, Ian A.
    STATISTICAL MODELLING, 2008, 8 (01) : 81 - 96
  • [2] AN EXTENDED CLASS OF UNIVARIATE AND MULTIVARIATE GENERALIZED POLYA PROCESSES
    Cha, Ji Hwan
    ADVANCES IN APPLIED PROBABILITY, 2022, 54 (03) : 974 - 997
  • [3] Causal inference using multivariate generalized linear mixed-effects models
    Xu, Yizhen
    Kim, Ji Soo
    Hummers, Laura K.
    Shah, Ami A.
    Zeger, Scott L.
    BIOMETRICS, 2024, 80 (03)
  • [4] Robustifying Marginal Linear Models for Correlated Responses Using a Constructive Multivariate Huber Distribution
    Mohammadi, Raziyeh
    Kazemi, Iraj
    STATISTICAL ANALYSIS AND DATA MINING-AN ASA DATA SCIENCE JOURNAL, 2025, 18 (01):
  • [5] Multivariate generalized linear mixed models for underdispersed count data
    da Silva, Guilherme Parreira
    Laureano, Henrique Aparecido
    Petterle, Ricardo Rasmussen
    Ribeiro Jr, Paulo Justiniano
    Bonat, Wagner Hugo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (14) : 2410 - 2427
  • [6] Analysis of multivariate longitudinal kidney function outcomes using generalized linear mixed models
    Miran A Jaffa
    Mulugeta Gebregziabher
    Ayad A Jaffa
    Journal of Translational Medicine, 13
  • [7] Analysis of multivariate longitudinal kidney function outcomes using generalized linear mixed models
    Jaffa, Miran A.
    Gebregziabher, Mulugeta
    Jaffa, Ayad A.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2015, 13
  • [8] Spatial generalized linear mixed models with multivariate CAR models for areal data
    Torabi, Mahmoud
    SPATIAL STATISTICS, 2014, 10 : 12 - 26
  • [9] Inference on Archimedean copulas using mixtures of Polya trees
    Guillotte, Simon
    Perron, Julien
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 166 : 2 - 13
  • [10] Component-Based Regularization of Multivariate Generalized Linear Mixed Models
    Chauvet, Jocelyn
    Trottier, Catherine
    Bry, Xavier
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (04) : 909 - 920