Kolmogorov complexity and noncomputability

被引:0
作者
Davie, G [1 ]
机构
[1] Univ S Africa, Dept Math Appl Math & Astron, ZA-0003 Pretoria, South Africa
关键词
Kolmogorov complexity; noncomputable;
D O I
10.1002/1521-3870(200211)48:4<574::AID-MALQ574>3.0.CO;2-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a method suggested by Kolmogorov complexity to examine some relations between Kolmogorov complexity and noncomputability. In particular we show that the method consistently gives us more information than conventional ways of demonstrating noncomputability (e.g. by embedding in the halting problem). Also, many sets which are (at least) awkwaxd to embed into the halting problem are easily shown noncomputable. We also prove a gap-theorem for outputting consecutive integers and find, for a given length n, a statement of length n with maximal (shortest) proof length.
引用
收藏
页码:574 / 580
页数:7
相关论文
共 11 条
[1]  
CALUDE C, 1994, INFORMATION RANDOMNE
[2]  
CHAITIN G, 1987, ALGORITHMIC INFORMAT
[4]   THEORY OF PROGRAM SIZE FORMALLY IDENTICAL TO INFORMATION-THEORY [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1975, 22 (03) :329-340
[5]   ON LENGTH OF PROGRAMS FOR COMPUTING FINITE BINARY SEQUENCES [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1966, 13 (04) :547-+
[6]   3 APPROACHES TO QUANTITATIVE DEFINITION OF INFORMATION [J].
KOLMOGOROV, AN .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1968, 2 (02) :157-+
[7]   LOGICAL BASIS FOR INFORMATION THEORY AND PROBABILITY THEORY [J].
KOLMOGOROV, AN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (05) :662-+
[8]  
Li M., 2019, INTRO KOLMOGOROV COM, DOI [10.1007/978-3-030-11298-1, DOI 10.1007/978-3-030-11298-1]
[9]  
Soare Robert I., 1987, RECURSIVELY ENUMERAB
[10]   FORMAL THEORY OF INDUCTIVE INFERENCE .I. [J].
SOLOMONOFF, RJ .
INFORMATION AND CONTROL, 1964, 7 (01) :1-+