Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins

被引:21
作者
Manasaryan, Garri [1 ]
Suplatov, Dmitry [2 ]
Pushkarev, Sergey [3 ]
Drobot, Viktor [2 ]
Kuimov, Alexander [2 ]
Svedas, Vytas [2 ,3 ]
Nilov, Dmitry [2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Med, Lomonosov Ave 27,Bldg 1, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Belozersky Inst Physicochem Biol, Lenin Hills 1,Bldg 40, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, Lenin Hills 1,Bldg 73, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
poly(ADP-ribose) polymerase; inhibitor; nicotinamide; 7-methylguanine; D-loop; tankyrase; molecular dynamics; homology modeling; PARP INHIBITORS; STRUCTURAL BASIS; LEAD FINDER; DNA-REPAIR; TANKYRASE; DOCKING; OPPORTUNITIES; DISCOVERY; THERAPY; POTENT;
D O I
10.3390/cancers13061201
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary The PARP family consists of 17 proteins, and some of them are responsible for cancer cells' viability. Much attention is therefore given to the search for chemical compounds with the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we present the results of a family-wide bioinformatic analysis of an important functional region in the PARP structure and describe factors that can guide the design of highly selective compounds. The PARP family consists of 17 members with diverse functions, including those related to cancer cells' viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.
引用
收藏
页码:1 / 18
页数:16
相关论文
共 96 条
[1]   Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins [J].
Alemasova, Elizaveta E. ;
Lavrik, Olga I. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (08) :3811-3827
[2]   The PARP superfamily [J].
Amé, JC ;
Spenlehauer, C ;
de Murcia, G .
BIOESSAYS, 2004, 26 (08) :882-893
[3]   Discovery of Ligands for ADP-Ribosyltransferases via Docking-Based Virtual Screening [J].
Andersson, C. David ;
Karlberg, Tobias ;
Ekblad, Torun ;
Lindgren, Anders E. G. ;
Thorsell, Ann-Gerd ;
Spjut, Sara ;
Uciechowska, Urszula ;
Niemiec, Moritz S. ;
Wittung-Stafshede, Pernilla ;
Weigelt, Johan ;
Elofsson, Mikael ;
Schuler, Herwig ;
Linusson, Anna .
JOURNAL OF MEDICINAL CHEMISTRY, 2012, 55 (17) :7706-7718
[4]  
[Anonymous], 2015, AMBER 2015
[5]   Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance [J].
Bai, Peter .
MOLECULAR CELL, 2015, 58 (06) :947-958
[6]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[7]   Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma [J].
Barbarulo, A. ;
Iansante, V. ;
Chaidos, A. ;
Naresh, K. ;
Rahemtulla, A. ;
Franzoso, G. ;
Karadimitris, A. ;
Haskard, D. O. ;
Papa, S. ;
Bubici, C. .
ONCOGENE, 2013, 32 (36) :4231-4242
[8]   Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation [J].
Barkauskaite, Eva ;
Jankevicius, Gytis ;
Ahel, Ivan .
MOLECULAR CELL, 2015, 58 (06) :935-946
[9]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[10]   Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases [J].
Berger, Nathan A. ;
Besson, Valerie C. ;
Boulares, A. Hamid ;
Burkle, Alexander ;
Chiarugi, Alberto ;
Clark, Robert S. ;
Curtin, Nicola J. ;
Cuzzocrea, Salvatore ;
Dawson, Ted M. ;
Dawson, Valina L. ;
Hasko, Gyorgy ;
Liaudet, Lucas ;
Moroni, Flavio ;
Pacher, Pal ;
Radermacher, Peter ;
Salzman, Andrew L. ;
Snyder, Solomon H. ;
Soriano, Francisco Garcia ;
Strosznajder, Robert P. ;
Sumegi, Balazs ;
Swanson, Raymond A. ;
Szabo, Csaba .
BRITISH JOURNAL OF PHARMACOLOGY, 2018, 175 (02) :192-222