Multi-scale Classification for Electrosensing

被引:2
|
作者
Baldassari, Lorenzo [1 ]
Scapin, Andrea [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2021年 / 14卷 / 01期
基金
瑞士国家科学基金会;
关键词
classifier combination; weakly electric fish; electrosensing; shape classification; reconstruction; ELECTRIC FISH; ACTIVE ELECTROLOCATION; KRONECKER PRODUCTS; CLASSIFIERS; INVERSE; OBJECTS;
D O I
10.1137/20M1344317
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a premier and innovative (real-time) multi-scale method for target classification in electrosensing. The intent is that of mimicking the behavior of the weakly electric fish, which is able to retrieve much more information about the target by approaching it. The method is based on a family of transform-invariant shape descriptors computed from generalized polarization tensors (GPTs) reconstructed at multiple scales. The evidence provided by the different descriptors at each scale is fused using Dempster-Shafer theory. Numerical simulations show that the recognition algorithm we propose performs undoubtedly well and yields a robust classification.
引用
收藏
页码:26 / 57
页数:32
相关论文
共 50 条
  • [1] Dynamic multi-scale image classification
    Salden, A
    Iacob, S
    INTERNET IMAGING II, 2001, 4311 : 156 - 167
  • [2] Multi-scale kernel methods for classification
    Kingsbury, N
    Tay, DBH
    Palaniswami, M
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 43 - 48
  • [3] Object classification with multi-scale autoconvolution
    Rahtu, E
    Heikkilä, J
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 37 - 40
  • [4] CONTEXTUAL MULTI-SCALE IMAGE CLASSIFICATION ON QUADTREE
    Hedhli, Ihsen
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1349 - 1353
  • [5] Multi-scale classification of moving objects trajectories
    du Mouza, C
    Rigaux, P
    16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 307 - 316
  • [6] Interactive multi-scale exploration for volume classification
    Lum, Eric B.
    Shearer, James
    Ma, Kwan-Liu
    VISUAL COMPUTER, 2006, 22 (9-11): : 622 - 630
  • [7] Combining Multi-Scale Dissimilarities for Image Classification
    Li, Yan
    Duin, Robert P. W.
    Loog, Marco
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1639 - 1642
  • [8] Learning Multi-scale Representations for Material Classification
    Li, Wenbin
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 757 - 764
  • [9] MULTI-SCALE RESIDUAL NETWORK FOR IMAGE CLASSIFICATION
    Zhong, Xian
    Gong, Oubo
    Huang, Wenxin
    Yuan, Jingling
    Ma, Bo
    Li, Ryan Wen
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2023 - 2027
  • [10] IMAGE CLASSIFICATION METHOD WITH MULTI-SCALE FEATURES
    Lu, Peng
    Zou, Peiqi
    Zou, Guoliang
    Zheng, Zongsheng
    Zou, Peiqi
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (06) : 1183 - 1191