Many-body levels of optically excited and multiply charged InAs nanocrystals modeled by semiempirical tight binding -: art. no. 235307

被引:52
作者
Lee, S
Kim, J
Jönsson, L
Wilkins, JW
Bryant, GW
Klimeck, G
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[3] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[4] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1103/PhysRevB.66.235307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many-body levels of optically excited and multiply charged InAs nanocrystals are studied with the semiempirical tight-binding model. Single-particle levels of unstrained spherical InAs nanocrystals are described by the sp(3)d(5)s(*) nearest-neighbor tight-binding model including spin-orbit coupling. For optically excited InAs nanocrystals, first-order corrections of electron-hole Coulomb and exchange interaction to exciton levels and the oscillator strengths of the exciton levels determine several low-lying, bright-exciton levels. The origin of the large oscillator strengths of the bright exciton levels is explained by the analysis of dominant angular momenta of exciton envelope functions. Good agreement with photoluminescence excitation experiments is achieved for the size dependence of the three lowest bright-exciton energies of InAs nanocrystals with radius larger than 20 A. For multiply charged InAs nanocrystals, polarization of the nanocrystal environment is approximated by modeling the environment with a uniform dielectric medium. This polarization model incorporated into the tight-binding model provides a reasonable description of electron and hole addition energies in scanning tunneling spectroscopy experiments.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 40 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Quantum confinement energies in zinc-blende III-V and group IV semiconductors [J].
Allan, G ;
Niquet, YM ;
Delerue, C .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :639-641
[3]   Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J].
Banin, U ;
Lee, CJ ;
Guzelian, AA ;
Kadavanich, AV ;
Alivisatos, AP ;
Jaskolski, W ;
Bryant, GW ;
Efros, AL ;
Rosen, M .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (06) :2306-2309
[4]   Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J].
Banin, U ;
Cao, YW ;
Katz, D ;
Millo, O .
NATURE, 1999, 400 (6744) :542-544
[5]   SURFACE-POLARIZATION INSTABILITIES OF ELECTRON-HOLE PAIRS IN SEMICONDUCTOR QUANTUM DOTS [J].
BANYAI, L ;
GILLIOT, P ;
HU, YZ ;
KOCH, SW .
PHYSICAL REVIEW B, 1992, 45 (24) :14136-14142
[6]   Exploitation of optical interconnects in future server architectures [J].
Benner, AF ;
Ignatowski, M ;
Kash, JA ;
Kuchta, DM ;
Ritter, MB .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (4-5) :755-775
[7]   Quantum information processing with semiconductor macroatoms [J].
Biolatti, E ;
Iotti, RC ;
Zanardi, P ;
Rossi, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5647-5650
[8]   QUANTUM CRYSTALLITES AND NONLINEAR OPTICS [J].
BRUS, L .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 53 (06) :465-474
[9]   SPECTROSCOPY OF QUANTUM LEVELS IN CHARGE-TUNABLE INGAAS QUANTUM DOTS [J].
DREXLER, H ;
LEONARD, D ;
HANSEN, W ;
KOTTHAUS, JP ;
PETROFF, PM .
PHYSICAL REVIEW LETTERS, 1994, 73 (16) :2252-2255
[10]   The electronic structure of semiconductor nanocrystals [J].
Efros, AL ;
Rosen, M .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :475-521