Polytopes of Maximal Volume Product

被引:7
作者
Alexander, Matthew [1 ]
Fradelizi, Matthieu [2 ]
Zvavitch, Artem [1 ]
机构
[1] Kent State Univ, Dept Math, Kent, OH 44242 USA
[2] Univ Paris Est, CNRS, UPEC, LAMA UMR 8050,UPEMLV, F-77454 Marne La Vallee, France
基金
美国国家科学基金会;
关键词
Polar Bodies; Volume product; Mahler conjecture; Simplicial polytope; CONVEX-BODIES; MAHLER CONJECTURE; LOCAL MINIMALITY; BANACH-SPACES; INEQUALITIES; ZONOIDS;
D O I
10.1007/s00454-019-00072-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a convex body K subset of R-n, let K-z = {y is an element of R-n : < y - z, x - z <= 1, for all x is an element of K} be the polar body of K with respect to the center of polarity z. Rn. The goal of this paper is to study the maximum of the volume product P(K) = min(z is an element of int(K)) vertical bar K parallel to K-z vertical bar, among convex polytopes K subset of R-n with a number of vertices bounded by some fixed integer m >= n + 1. In particular, we prove a combinatorial formula characterizing a polytope of maximal volume product and use this formula to show that the supremum is reached at a simplicial polytope with exactly m vertices. We also use this formula to provide a proof of a result of Meyer and Reisner showing that, in the plane, the regular polygon has maximal volume product among all polygons with at most m vertices. Finally, we treat the case of polytopes with n + 2 vertices in R-n.
引用
收藏
页码:583 / 600
页数:18
相关论文
共 37 条
  • [1] [Anonymous], 1995, LECT POLYTOPES
  • [2] Barthe F, 2013, AM J MATH, V135, P311
  • [3] ON THE VOLUME PRODUCT OF PLANAR POLAR CONVEX BODIES - LOWER ESTIMATES WITH STABILITY
    Boeroeczky, K. J.
    Makai, E., Jr.
    Meyer, M.
    Reisner, S.
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2013, 50 (02) : 159 - 198
  • [4] NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN
    BOURGAIN, J
    MILMAN, VD
    [J]. INVENTIONES MATHEMATICAE, 1987, 88 (02) : 319 - 340
  • [5] On volume product inequalities for convex sets
    Campi, S
    Gronchi, P
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2393 - 2402
  • [6] An Application of Shadow Systems to Mahler's Conjecture
    Fradelizi, Matthieu
    Meyer, Mathieu
    Zvavitch, Artem
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (03) : 721 - 734
  • [7] THE ISOTROPIC POSITION AND THE REVERSE SANTALO INEQUALITY
    Giannopoulos, Apostolos
    Paouris, Grigoris
    Vritsiou, Beatrice-Helen
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) : 1 - 22
  • [8] On the asymmetry constant of a body with few vertices
    Gluskin, ED
    Litvak, AE
    [J]. GEOMETRIAE DEDICATA, 2002, 90 (01) : 45 - 48
  • [9] ZONOIDS WITH MINIMAL VOLUME-PRODUCT - A NEW PROOF
    GORDON, Y
    MEYER, M
    REISNER, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) : 273 - 276
  • [10] Gordon Y, 2014, HOUSTON J MATH, V40, P385