Polytopes of Maximal Volume Product

被引:7
作者
Alexander, Matthew [1 ]
Fradelizi, Matthieu [2 ]
Zvavitch, Artem [1 ]
机构
[1] Kent State Univ, Dept Math, Kent, OH 44242 USA
[2] Univ Paris Est, CNRS, UPEC, LAMA UMR 8050,UPEMLV, F-77454 Marne La Vallee, France
基金
美国国家科学基金会;
关键词
Polar Bodies; Volume product; Mahler conjecture; Simplicial polytope; CONVEX-BODIES; MAHLER CONJECTURE; LOCAL MINIMALITY; BANACH-SPACES; INEQUALITIES; ZONOIDS;
D O I
10.1007/s00454-019-00072-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a convex body K subset of R-n, let K-z = {y is an element of R-n : < y - z, x - z <= 1, for all x is an element of K} be the polar body of K with respect to the center of polarity z. Rn. The goal of this paper is to study the maximum of the volume product P(K) = min(z is an element of int(K)) vertical bar K parallel to K-z vertical bar, among convex polytopes K subset of R-n with a number of vertices bounded by some fixed integer m >= n + 1. In particular, we prove a combinatorial formula characterizing a polytope of maximal volume product and use this formula to show that the supremum is reached at a simplicial polytope with exactly m vertices. We also use this formula to provide a proof of a result of Meyer and Reisner showing that, in the plane, the regular polygon has maximal volume product among all polygons with at most m vertices. Finally, we treat the case of polytopes with n + 2 vertices in R-n.
引用
收藏
页码:583 / 600
页数:18
相关论文
共 37 条
[1]  
[Anonymous], 1995, LECT POLYTOPES
[2]  
Barthe F, 2013, AM J MATH, V135, P311
[3]   ON THE VOLUME PRODUCT OF PLANAR POLAR CONVEX BODIES - LOWER ESTIMATES WITH STABILITY [J].
Boeroeczky, K. J. ;
Makai, E., Jr. ;
Meyer, M. ;
Reisner, S. .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2013, 50 (02) :159-198
[4]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[5]   On volume product inequalities for convex sets [J].
Campi, S ;
Gronchi, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) :2393-2402
[6]   An Application of Shadow Systems to Mahler's Conjecture [J].
Fradelizi, Matthieu ;
Meyer, Mathieu ;
Zvavitch, Artem .
DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (03) :721-734
[7]   THE ISOTROPIC POSITION AND THE REVERSE SANTALO INEQUALITY [J].
Giannopoulos, Apostolos ;
Paouris, Grigoris ;
Vritsiou, Beatrice-Helen .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) :1-22
[8]   On the asymmetry constant of a body with few vertices [J].
Gluskin, ED ;
Litvak, AE .
GEOMETRIAE DEDICATA, 2002, 90 (01) :45-48
[9]   ZONOIDS WITH MINIMAL VOLUME-PRODUCT - A NEW PROOF [J].
GORDON, Y ;
MEYER, M ;
REISNER, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :273-276
[10]  
Gordon Y, 2014, HOUSTON J MATH, V40, P385