Boundary stabilization of linear elastodynamic system.: A new Approach

被引:5
作者
Bey, R
Heminna, A
Lohéac, JP
机构
[1] Ecole Cent Lyon, DMI, CNRS UMR 5585, F-69131 Ecully, France
[2] USTHB, Inst Math, Alger 16111, Algeria
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 07期
关键词
D O I
10.1016/S0764-4442(00)00198-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new approach to obtain the boundary stabilization of isotropic linear elastodynamic system by a "natural" feedback; this method lends to weak geometrical conditions. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:563 / 566
页数:4
相关论文
共 9 条
[1]   Boundary observability, controllability and stabilization of linear elastodynamic systems [J].
Alabau, F ;
Komornik, V .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05) :519-524
[2]  
BEY R, 1999, 5585 CNRS UMR
[3]   Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity [J].
Horn, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) :126-150
[4]  
Komornik V., 1994, EXACT CONTROLABILITY
[5]   BOUNDARY STABILIZATION OF LINEAR ELASTODYNAMIC SYSTEMS [J].
LAGNESE, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (06) :968-984
[6]   UNIFORM ASYMPTOTIC ENERGY ESTIMATES FOR SOLUTIONS OF THE EQUATIONS OF DYNAMIC PLANE ELASTICITY WITH NONLINEAR DISSIPATION AT THE BOUNDARY [J].
LAGNESE, JE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (01) :35-54
[7]   UNIFORM EXPONENTIAL ENERGY DECAY OF WAVE-EQUATIONS IN A BOUNDED REGION WITH L2(0, INFINITY, L2(GAMMA))-FEEDBACK CONTROL IN THE DIRICHLET BOUNDARY-CONDITIONS [J].
LASIECKA, I ;
TRIGGIANI, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 66 (03) :340-390
[8]  
Lemrabet K., 1987, THESIS USTHB ALGER
[9]  
VALID R, 1977, MECANIQUE MILIEUX CO