N-type cathode interlayer based on dicyanomethylenated quinacridone derivative for high-performance polymer solar cells

被引:24
|
作者
Chen, Weiping [1 ]
Lv, Junjie [1 ]
Han, Jianxiong [1 ]
Chen, Youchun [1 ]
Jia, Tao [1 ]
Li, Fenghong [1 ]
Wang, Yue [1 ]
机构
[1] Jilin Univ, State Key Lab Supramol Struct & Mat, Qianjin Ave, Changchun 130012, Peoples R China
关键词
ELECTRON-TRANSPORT LAYER; INTERFACIAL LAYER; CONJUGATED POLYELECTROLYTE; ORGANIC PHOTOVOLTAICS; BUFFER LAYER; ENHANCED PERFORMANCE; EFFICIENCY; DEVICES; NANOSTRUCTURES; COLLECTION;
D O I
10.1039/c5ta09701k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new p-conjugated electrolyte bis(dicyanomethylene)-quinacridone with two octyl-pyridium (DCNQA-PyBr) has been synthesized and employed as a solution-processed cathode interlayer (CIL) for polymer solar cells (PSCs). The devices exhibited simultaneously increased open-circuit voltage (V-oc), short-circuit current (J(sc)) and fill factor (FF). Overall, the PSCs with PCDTBT (poly[N-9 ''-heptadecanyl-2,7-carbazole-alt- 5,5-(40,7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) as a donor and PC71BM ([6,6]-phenyl C-71-butyric acid methyl ester) as an acceptor incorporating a 13 nm DCNQA-PyBr interlayer exhibit a power conversion efficiency (PCE) of 6.96%, which is 1.3 times of that of the Al-only device. Most importantly, compared to the reference p-conjugated electrolyte QA-PyBr, DCNQA-PyBr shows much improved electron transport ability and conductivity. As a result, the DCNQA-PyBr based devices only show a slight decrease in electron transport upon increasing the thickness of the CIL, thus allowing a high PCE with a wide CIL thickness range from 5 nm to 40 nm. Furthermore, introducing DCNQA-PyBr as a CIL into the devices based on P3HT: PC61BM (P3HT - poly(3-hexylthiophene), PC61BM - [6,6]-phenyl C-61-butyric acid methyl ester) and PTB7: PC71BM (PTB7 = polythieno[3,4-b]-thiophene-co-benzodithiophene) also leads to significantly enhanced device performance, showing high PCEs of 3.91% and 8.23%, respectively. These results confirm DCNQA-PyBr to be a promising CIL material for solution-processed large-area PSCs.
引用
收藏
页码:2169 / 2177
页数:9
相关论文
共 50 条
  • [41] Self-doped n-type water/alcohol-soluble conjugated polymers ETL for high-performance polymer and perovskite solar cells
    Li, Yongfang
    SCIENCE CHINA-CHEMISTRY, 2016, 59 (11) : 1430 - 1431
  • [42] Self-doped n-type water/alcohol-soluble conjugated polymers ETL for high-performance polymer and perovskite solar cells
    Yongfang Li
    Science China(Chemistry), 2016, 59 (11) : 1430 - 1431
  • [43] Imide-functionalized n-type polymers for high-performance organic thin-film transistors and all-polymer solar cells
    Guo, Xugang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [44] Self-doped n-type water/alcohol-soluble conjugated polymers ETL for high-performance polymer and perovskite solar cells
    Yongfang Li
    Science China Chemistry, 2016, 59 : 1430 - 1431
  • [45] Self-doped n-type water/alcohol-soluble conjugated polymers ETL for high-performance polymer and perovskite solar cells
    Yongfang Li
    Science China(Chemistry) , 2016, (11) : 1430 - 1431
  • [46] n-Type polymer electron acceptors for organic solar cells
    Gu, Chuantao
    Su, Xinze
    Li, Yonghai
    Liu, Bing
    Tian, Yong
    Tan, Weiqiang
    Ma, Jiping
    Bao, Xichang
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2022, 7 (11) : 1364 - 1384
  • [47] Perylene-diimide-based cathode interlayer materials for high performance organic solar cells
    Yao, Jia
    Chen, Qi
    Zhang, Cen
    Zhang, Zhi-Guo
    Li, Yongfang
    SUSMAT, 2022, 2 (03): : 243 - 263
  • [48] Fused Benzothiadiazole: A Building Block for n-Type Organic Acceptor to Achieve High-Performance Organic Solar Cells
    Yuan, Jun
    Zhang, Yunqiang
    Zhou, Liuyang
    Zhang, Chujun
    Lau, Tsz-Ki
    Zhang, Guichuan
    Lu, Xinhui
    Yip, Hin-Lap
    So, Shu Kong
    Beaupre, Serge
    Mainville, Mathieu
    Johnson, Paul A.
    Leclerc, Mario
    Chen, Honggang
    Peng, Hongjian
    Li, Yongfang
    Zou, Yingping
    ADVANCED MATERIALS, 2019, 31 (17)
  • [49] High-performance n-type polymer field-effect transistors with exceptional stability
    Makala, Manikanta
    Barlog, Maciej
    Dremann, Derek
    Attar, Salahuddin
    Fernandez, Edgar Gutierrez
    Al-Hashimi, Mohammed
    Jurchescu, Oana D.
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (42) : 17089 - 17098
  • [50] A Fluorinated Phenylene Unit as a Building Block for High-Performance n-Type Semiconducting Polymer
    Park, Jung Ha
    Jung, Eui Hyuk
    Jung, Jae Woong
    Jo, Won Ho
    ADVANCED MATERIALS, 2013, 25 (18) : 2583 - 2588