N-type cathode interlayer based on dicyanomethylenated quinacridone derivative for high-performance polymer solar cells

被引:24
|
作者
Chen, Weiping [1 ]
Lv, Junjie [1 ]
Han, Jianxiong [1 ]
Chen, Youchun [1 ]
Jia, Tao [1 ]
Li, Fenghong [1 ]
Wang, Yue [1 ]
机构
[1] Jilin Univ, State Key Lab Supramol Struct & Mat, Qianjin Ave, Changchun 130012, Peoples R China
关键词
ELECTRON-TRANSPORT LAYER; INTERFACIAL LAYER; CONJUGATED POLYELECTROLYTE; ORGANIC PHOTOVOLTAICS; BUFFER LAYER; ENHANCED PERFORMANCE; EFFICIENCY; DEVICES; NANOSTRUCTURES; COLLECTION;
D O I
10.1039/c5ta09701k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new p-conjugated electrolyte bis(dicyanomethylene)-quinacridone with two octyl-pyridium (DCNQA-PyBr) has been synthesized and employed as a solution-processed cathode interlayer (CIL) for polymer solar cells (PSCs). The devices exhibited simultaneously increased open-circuit voltage (V-oc), short-circuit current (J(sc)) and fill factor (FF). Overall, the PSCs with PCDTBT (poly[N-9 ''-heptadecanyl-2,7-carbazole-alt- 5,5-(40,7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) as a donor and PC71BM ([6,6]-phenyl C-71-butyric acid methyl ester) as an acceptor incorporating a 13 nm DCNQA-PyBr interlayer exhibit a power conversion efficiency (PCE) of 6.96%, which is 1.3 times of that of the Al-only device. Most importantly, compared to the reference p-conjugated electrolyte QA-PyBr, DCNQA-PyBr shows much improved electron transport ability and conductivity. As a result, the DCNQA-PyBr based devices only show a slight decrease in electron transport upon increasing the thickness of the CIL, thus allowing a high PCE with a wide CIL thickness range from 5 nm to 40 nm. Furthermore, introducing DCNQA-PyBr as a CIL into the devices based on P3HT: PC61BM (P3HT - poly(3-hexylthiophene), PC61BM - [6,6]-phenyl C-61-butyric acid methyl ester) and PTB7: PC71BM (PTB7 = polythieno[3,4-b]-thiophene-co-benzodithiophene) also leads to significantly enhanced device performance, showing high PCEs of 3.91% and 8.23%, respectively. These results confirm DCNQA-PyBr to be a promising CIL material for solution-processed large-area PSCs.
引用
收藏
页码:2169 / 2177
页数:9
相关论文
共 50 条
  • [1] A Hyperbranched Conjugated Polymer as the Cathode Interlayer for High-Performance Polymer Solar Cells
    Lv, Menglan
    Li, Shusheng
    Jasieniak, Jacek J.
    Hou, Jianhui
    Zhu, Jin
    Tan, Zhan'ao
    Watkins, Scott E.
    Li, Yongfang
    Chen, Xiwen
    ADVANCED MATERIALS, 2013, 25 (47) : 6889 - 6894
  • [2] An N-type Naphthalene Diimide Ionene Polymer as Cathode Interlayer for Organic Solar Cells
    Sorrentino, Roberto
    Penconi, Marta
    Andicsova-Eckstein, Anita
    Scavia, Guido
    Svajdlenkova, Helena
    Kozma, Erika
    Luzzati, Silvia
    ENERGIES, 2021, 14 (02)
  • [3] Efficient polymer solar cells based on a cathode interlayer of dicyanomethylenated indacenodithiophene derivative with large π-conjugation and electron-deficient properties
    Miao, Yang
    Yu, Hanbo
    Zhang, Yuewei
    Yan, Xianju
    Zhang, Jingying
    Wang, Yue
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (01) : 57 - 65
  • [4] Perylene Diimide-Based Zwitterion as the Cathode Interlayer for High-Performance Nonfullerene Polymer Solar Cells
    Song, Changjian
    Liu, Xiaohui
    Li, Xiaodong
    Wang, Ying-Chiao
    Wan, Li
    Sun, Xiaohua
    Zhang, Wenjun
    Fang, Junfeng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14986 - 14992
  • [5] High-Performance Polymer Tandem Solar Cells Employing a New n-Type Conjugated Polymer as an Interconnecting Layer
    Zhang, Kai
    Gao, Ke
    Xia, Ruoxi
    Wu, Zhihong
    Sun, Chen
    Cao, Jiamin
    Qian, Liu
    Li, Weiqi
    Liu, Shiyuan
    Huang, Fei
    Peng, Xiaobin
    Ding, Liming
    Yip, Hin-Lap
    Cao, Yong
    ADVANCED MATERIALS, 2016, 28 (24) : 4817 - 4823
  • [6] Improved photovoltaic performance and stability of perovskite solar cells by adoption of an n-type zwitterionic cathode interlayer
    Noh, Young Wook
    Ha, Jung Min
    Son, Jung Geon
    Han, Jongmin
    Lee, Heunjeong
    Kim, Dae Woo
    Jee, Min Hun
    Shin, Woo Gyeong
    Cho, Shinuk
    Kim, Jin Young
    Song, Myoung Hoon
    Woo, Han Young
    MATERIALS HORIZONS, 2024, 11 (12) : 2926 - 2936
  • [7] High-Performance All-Polymer Solar Cells Enabled by an n-Type Polymer Based on a Fluorinated Imide-Functionalized Arene
    Sun, Huiliang
    Tang, Yumin
    Koh, Chang Woo
    Ling, Shaohua
    Wang, Ruizhi
    Yang, Kun
    Yu, Jianwei
    Shi, Yongqiang
    Wang, Yingfeng
    Woo, Han Young
    Guo, Xugang
    ADVANCED MATERIALS, 2019, 31 (15)
  • [8] Quinacridone derivative as a thickness-insensitive cathode interlayer for efficient and stable inverted perovskite solar cells
    Bing, Zilong
    Yu, Chengzhuo
    Yang, Jialin
    Liu, Huiru
    Chen, Weiping
    Huang, Jingsong
    Li, Fenghong
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [9] Quaternisation-polymerized N-type polyelectrolytes: synthesis, characterisation and application in high-performance polymer solar cells
    Hu, Zhicheng
    Xu, Rongguo
    Dong, Sheng
    Lin, Kai
    Liu, Jinju
    Huang, Fei
    Cao, Yong
    MATERIALS HORIZONS, 2017, 4 (01) : 88 - 97
  • [10] High-performance polymer heterojunction solar cells of a polysilafluorene derivative
    Wang, Ergang
    Wang, Li
    Lan, Linfeng
    Luo, Chan
    Zhuang, Wenliu
    Peng, Junbiao
    Cao, Yong
    APPLIED PHYSICS LETTERS, 2008, 92 (03)