The 192 solutions of the Heun equation

被引:79
作者
Maier, Robert S. [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
D O I
10.1090/S0025-5718-06-01939-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A machine-generated list of 192 local solutions of the Heun equation is given. They are analogous to Kummer's 24 solutions of the Gauss hypergeometric equation, since the two equations are canonical Fuchsian differential equations on the Riemann sphere with four and three singular points, respectively. Tabulation is facilitated by the identification of the automorphism group of the equation with n singular points as the Coxeter group D-n. Each of the 192 expressions is labeled by an element of D-4. Of the 192, 24 are equivalent expressions for the local Heun function Hl, and it is shown that the resulting order-24 group of transformations of Hl is isomorphic to the symmetric group S-4. The isomorphism encodes each transformation as a permutation of an abstract four-element set, not identical to the set of singular points.
引用
收藏
页码:811 / 843
页数:33
相关论文
共 30 条
[1]  
Abramowitz M., 1964, APPL MATH SERIES, V55
[2]  
Andrews G. E., 1999, SPECIAL FUNCTIONS, DOI DOI 10.1017/CBO9781107325937
[3]   STRUCTURE AND REPRESENTATIONS OF THE HYPEROCTAHEDRAL GROUP [J].
BAAKE, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (11) :3171-3182
[4]   Q-EULERIAN POLYNOMIALS ARISING FROM COXETER GROUPS [J].
BRENTI, F .
EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) :417-441
[6]  
ERDELYI A, 1953, HIGHER TRANSCENDENTA, P14685
[7]  
FRANZ K, 1898, UNTERSUCHUNGEN LINEA, V2, P14685
[8]   TREIBICH-VERDIER POTENTIALS AND THE STATIONARY (M)KDV HIERARCHY [J].
GESZTESY, F ;
WEIKARD, R .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (03) :451-476
[9]  
GRAY JJ, 2000, LINEAR DIFFERENTIAL, P51835
[10]  
Grove L. C., 1985, FINITE REFLECTION GR