Reduction of CO2 Emission from Off-Gases of Steel Industry by Dry Reforming of Methane

被引:44
作者
Angeli, Sofia D. [1 ]
Gossler, Sabrina [1 ]
Lichtenberg, Sven [1 ]
Kass, Gilles [2 ]
Agrawal, Anand Kumar [2 ]
Valerius, Miriam [2 ]
Kinzel, Klaus Peter [2 ]
Deutschmann, Olaf [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem, D-76128 Kalrsruhe, Germany
[2] PAUL WURTH SA, L-1122 Luxembourg, Luxembourg
关键词
blast furnace gas (BFG); CO2 emissions reduction; coke oven gas (COG); dry reforming; steelwork off-gas valorisation;
D O I
10.1002/anie.202100577
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In a novel process, CO2 and CH4 from the off-gases of the coke oven and blast furnace are used in homogeneous reforming of those greenhouse gases to valuable syngas, a mixture of H-2 and CO. Synthetic mixtures of the off-gases from those large apparatuses of steel industry are fed to a high-temperature, high-pressure flow reactor at varying temperature, pressure, residence time, and mixing ratio of coke oven gas (COG) to blast furnace gas (BFG). In this study, a maximal reduction of 78.5 % CO2 and a CH4 conversion of 95 % could be achieved at 1350 degrees C, 5.5 bar, and a COG/BFG ratio of 0.6. Significant carbonaceous deposits were formed but did not block the reactor tube in the operational time window allowing cyclic operation of the process. These measurements were based on prior thermodynamic analysis and kinetic predictions using an elementary-step reaction mechanism.
引用
收藏
页码:11852 / 11857
页数:6
相关论文
共 29 条
[1]  
Agrawal A.K., 2018, 8 INT C SCI TECHN IR
[2]  
Ahrendt W.A., 1981, APPARATUS DIRECT RED
[3]   Flexible energy conversion and storage via high-temperature gas-phase reactions: The piston engine as a polygeneration reactor [J].
Atakan, Burak ;
Kaiser, Sebastian A. ;
Herzler, Jurgen ;
Porras, Sylvia ;
Banke, Kai ;
Deutschmann, Olaf ;
Kasper, Tina ;
Fikri, Mustapha ;
Schiessl, Robert ;
Schroeder, Dominik ;
Rudolph, Charlotte ;
Kaczmarek, Dennis ;
Gossler, Hendrik ;
Drost, Simon ;
Bykov, Viatcheslav ;
Maas, Ulrich ;
Schulz, Christof .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
[4]   An overview of novel technologies to valorise coke oven gas surplus [J].
Bermudez, Jose M. ;
Arenillas, Ana ;
Luque, Rafael ;
Angel Menendez, J. .
FUEL PROCESSING TECHNOLOGY, 2013, 110 :150-159
[5]  
Birat JP, 2010, WOODHEAD PUBL SER EN, P492, DOI 10.1533/9781845699574.5.492
[6]  
Bockhorn H., 1994, SOOT FORMATION COMBU
[7]   Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization [J].
Deng, Lingyan ;
Adams, Thomas A., II .
ENERGY CONVERSION AND MANAGEMENT, 2020, 204
[8]  
Deutschmann O., 2020, DETCHEMTM, V2.6
[9]   Reaction mechanism of soot formation in flames [J].
Frenklach, M .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (11) :2028-2037
[10]   Dry and Steam Reforming of CH4 on Co-Hexaaluminate: On the Formation of Metallic Co and Its Influence on Catalyst Activity [J].
Giehr, Andreas ;
Maier, Lubow ;
Angeli, Sofia ;
Schunk, Stephan A. ;
Deutschmann, Olaf .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (42) :18790-18797