Computer-aided detection of lung nodules: a review

被引:34
|
作者
Shaukat, Furqan [1 ]
Raja, Gulistan [1 ]
Frangi, Alejandro F. [2 ,3 ]
机构
[1] Univ Engn & Technol, Dept Elect Engn, Taxila, Pakistan
[2] Univ Leeds, Sch Comp, Woodhouse Lane, Leeds, W Yorkshire, England
[3] Univ Leeds, Sch Med, Woodhouse Lane, Leeds, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
computer-aided detection; lung nodule detection; lung cancer; false positive; FALSE-POSITIVE REDUCTION; PULMONARY NODULES; AUTOMATIC DETECTION; CT IMAGES; TOMOGRAPHY SCANS; DETECTION SYSTEM; PATHOLOGICAL LUNG; NEURAL-NETWORKS; CLASSIFICATION; SEGMENTATION;
D O I
10.1117/1.JMI.6.2.020901
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We present an in-depth review and analysis of salient methods for computer-aided detection of lung nodules. We evaluate the current methods for detecting lung nodules using literature searches with selection criteria based on validation dataset types, nodule sizes, numbers of cases, types of nodules, extracted features in traditional feature-based classifiers, sensitivity, and false positives (FP)/scans. Our review shows that current detection systems are often optimized for particular datasets and can detect only one or two types of nodules. We conclude that, in addition to achieving high sensitivity and reduced FP/scans, strategies for detecting lung nodules must detect a variety of nodules with high precision to improve the performances of the radiologists. To the best of our knowledge, ours is the first review of the effectiveness of feature extraction using traditional feature-based classifiers. Moreover, we discuss deep-learning methods in detail and conclude that features must be appropriately selected to improve the overall accuracy of the system. We present an analysis of current schemes and highlight constraints and future research areas. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review
    Jalalian, Afsaneh
    Mashohor, Syamsiah B. T.
    Mahmud, Hajjah Rozi
    Saripan, M. Iqbal B.
    Ramli, Abdul Rahman B.
    Karasfi, Babak
    CLINICAL IMAGING, 2013, 37 (03) : 420 - 426
  • [42] Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity
    Nishio, Mizuho
    Nagashima, Chihiro
    ACADEMIC RADIOLOGY, 2017, 24 (03) : 328 - 336
  • [43] Computer-Aided Detection and Diagnosis of Breast Cancer: a Review
    Sharma, Bhanu Prakash
    Purwar, Ravindra Kumar
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2024, 13
  • [44] Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities
    Narayanan, Barath Narayanan
    Hardie, Russell C.
    Kebede, Temesguen M.
    Sprague, Matthew J.
    PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (02) : 559 - 571
  • [45] Phased searching with NEAT in a Time-Scaled Framework: Experiments on a computer-aided detection system for lung nodules
    Tan, Maxine
    Deklerck, Rudi
    Cornelis, Jan
    Jansen, Bart
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 59 (03) : 157 - 167
  • [46] Robust Computer-Aided Detection of Pulmonary Nodules from Chest Computed Tomography
    Abduh, Zaid
    Wahed, Manal Abdel
    Kadah, Yasser M.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (03) : 693 - 699
  • [47] COMPUTER-AIDED DETECTION OF PULMONARY NODULES USING GENETIC PROGRAMMING
    Choi, Wook-Jin
    Choi, Tae-Sun
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4353 - 4356
  • [48] Neural network–based computer-aided lung cancer detection
    Bhattacharjee A.
    Murugan R.
    Majumder S.
    Goel T.
    Research on Biomedical Engineering, 2021, 37 (04) : 657 - 671
  • [49] Computer-aided Detection of Small Pulmonary Nodules in Chest Radiographs: An Observer Study
    De Boo, Diederick W.
    Uffmann, Martin
    Weber, Michael
    Bipat, Shandra
    Boorsma, Eelco F.
    Scheerder, Maeke J.
    Freling, Nicole J.
    Schaefer-Prokop, Cornelia M.
    ACADEMIC RADIOLOGY, 2011, 18 (12) : 1507 - 1514
  • [50] A new scheme for computer-aided detection of CT lung nodules designed in consideration of ground-glass opacity
    Matsumoto, Sumiaki
    Ohno, Yoshiharu
    Yamagata, Hitoshi
    Asahina, Hiroshi
    Sugimura, Kazuro
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2006, 1 : 352 - 354