Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data

被引:4
作者
Li, Yue [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 02期
关键词
Vlasov-Fokker-Planck equation; Compressible Navier-Stokes equations; Nonhomogeneous boundary conditions; Weak solutions;
D O I
10.1007/s00033-021-01488-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a kinetic-fluid model with nonhomogeneous Dirichlet boundary data in a 3D bounded domain. This model consists of a Vlasov-Fokker-Planck equation coupled with the compressible Navier-Stokes equations via a friction force. We establish the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient gamma>32) with large initial data, and large velocity and density at the inflow boundary.
引用
收藏
页数:29
相关论文
共 50 条
[41]   On regularity of weak solutions to the instationary Navier-Stokes system: A review on recent results [J].
Farwig R. .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2014, 60 (1) :91-122
[42]   REGULARITY CRITERIA FOR WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM IN GENERAL UNBOUNDED DOMAINS [J].
Farwig, Reinhard ;
Riechwald, Paul Felix .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01) :157-172
[43]   Existence of global weak solutions for Navier-Stokes-Poisson equations with quantum effect and convergence to incompressible Navier-Stokes equations [J].
Yang, Jianwei ;
Ju, Qiangchang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) :3629-3641
[44]   Global Existence and Long-Time Behavior of Solutions to the Vlasov-Poisson-Fokker-Planck System [J].
Wang, Xiaolong .
ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) :853-881
[45]   Global Weak Solutions for 1D Compressible Navier-Stokes/Allen-Cahn System with Vacuum [J].
Li, Yinghua ;
Yan, Yuanxiang ;
Ding, Shijin ;
Chen, Gaoyang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01)
[46]   On the weighted decay for solutions of the Navier-Stokes system [J].
Kukavica, Igor .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2466-2470
[47]   Regularity of Weak Solutions to the Inhomogeneous Stationary Navier-Stokes Equations [J].
Tartaglione, Alfonsina .
SYMMETRY-BASEL, 2021, 13 (08)
[48]   Regularity of weak solutions to the Navier-Stokes equations in exterior domains [J].
Farwig, Reinhard ;
Komo, Christian .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (03) :303-321
[49]   ON THE UNIQUENESS OF BOUNDED WEAK SOLUTIONS TO THE NAVIER-STOKES CAUCHY PROBLEM [J].
Maremonti, Paolo .
MATEMATICKI VESNIK, 2009, 61 (01) :81-91
[50]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392