Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data

被引:4
作者
Li, Yue [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 02期
关键词
Vlasov-Fokker-Planck equation; Compressible Navier-Stokes equations; Nonhomogeneous boundary conditions; Weak solutions;
D O I
10.1007/s00033-021-01488-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a kinetic-fluid model with nonhomogeneous Dirichlet boundary data in a 3D bounded domain. This model consists of a Vlasov-Fokker-Planck equation coupled with the compressible Navier-Stokes equations via a friction force. We establish the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient gamma>32) with large initial data, and large velocity and density at the inflow boundary.
引用
收藏
页数:29
相关论文
共 50 条
[31]   Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system [J].
Bresch, D. ;
Burtea, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 :183-217
[32]   A remark on the global existence of weak solutions to the compressible quantum Navier-Stokes equations [J].
Tang, Tong ;
Zhang, Zujin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 :255-261
[33]   On the global existence of weak solutions for the Navier-Stokes equations of compressible fluid flows [J].
Perepelitsa, Mikhail .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1126-1153
[34]   Global Weak Solutions to Compressible Navier-Stokes-Vlasov-Boltzmann Systems for Spray Dynamics [J].
Gamba, Irene M. ;
Yu, Cheng .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
[35]   Global existence and large time behavior of classical solutions to the Euler-Maxwell-Vlasov-Fokker-Planck system [J].
Jiang, Peng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (12) :7715-7740
[36]   Weak solutions of the compressible isentropic Navier-Stokes equations [J].
Desjardins, B .
APPLIED MATHEMATICS LETTERS, 1999, 12 (07) :107-111
[37]   A LAGRANGIAN APPROACH FOR WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
Varnhorn, W. .
TOPICAL PROBLEMS OF FLUID MECHANICS 2020, 2020, :249-255
[38]   The global solutions of axisymmetric Navier-Stokes equations with anisotropic initial data [J].
Chen, Hui ;
Fang, Daoyuan ;
Zhang, Ting .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06)
[39]   Global classical solutions of free boundary problem of compressible Navier-Stokes equations with degenerate viscosity [J].
Yang, Andrew ;
Zhao, Xu ;
Zhou, Wenshu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 :1837-1860
[40]   On global behavior of weak solutions to the Navier-Stokes equations of compressible fluid for γ=5/3 [J].
Wang, Xiaoying ;
Wang, Weiwei .
BOUNDARY VALUE PROBLEMS, 2015,